The Photo Injector Test Facility at DESY in Zeuthen

2.0t

Anne Oppelt for the PITZ collaboration

4.4.2006

SERIOL SERIOL

Overview

 Motivation: VUV-FEL and XFEL → photo injector R&D for DESY's FELs The photo injector at Zeuthen \rightarrow a brief history of PITZ The PITZ1 research program → presentation of the PITZ1 results Facility upgrade: towards PITZ2 → current status and future plans Summary

• **VUV-FEL** is running as user facility since August 2005

- performance of the planned XFEL (>2012) depends strongly on the electron beam quality of the injector
- beam quality can only detoriate in the accelerator
- electron source must provide very small emittance beam
- photo injector development is urgent

- \rightarrow construction of a Photo Injector Test facility in Zeuthen with the goals:
 - develop an electron source for the XFEL:
 - \rightarrow very small transverse emittance ($\leq 1 \text{ mm mrad} @ 1 \text{ nC}$)
 - \rightarrow stable production of short bunches with small energy spread
 - extensive R&D on photo injectors independent of serving concrete FEL / user requests
 - compare detailed experimental results with simulations:
 - \rightarrow benchmark theoretical understanding of photo injectors
 - prepare rf guns for subsequent operation at VUV-FEL / XFEL
 - test new developments (laser, cathodes, beam diagnostics)
 - long term plans: e.g. flat beams, polarized electrons for ILC

Construction of the photo injector test facility (summer 2000)

4.4.2006, LAL Orsay

DES

The PITZ electron gun

- normal conducting 1.5 cell copper cavity
- frequency: 1.3 GHz (π-mode)
- coaxial RF input coupler
- 3 similar prototypes exist

4.4.2006, LAL Orsay

The PITZ1 setup

Schematics:

- PITZ1 phase (2001–2004) included the full characterization of the installed gun cavity
- full parameter optimization for emittance minimization has been done
- very good emittances have been obtained ($\epsilon \sim 1.6$ mm mrad)

• VUV-FEL startup request clearly fulfilled in 2003

 \rightarrow gun is transferred to Hamburg and installed in the VUV-FEL

• PITZ continues with a replacement gun

4.4.2006, LAL Orsay

PITZ1 research program

- Conditioning of the Gun cavity and dark current studies
- The laser system / measurement of laser parameters
- Characterization of the electron beam
 - charge
 - momentum and momentum spread
 - bunch length
 - beam size and transverse emittance
 - thermal emittance

- Gun conditioning -

1st Problem: max. acceleration gradient only reachable when full RF power in the cavity

- \rightarrow condition Gun for all possible RF settings (power level, pulse length, repetition rate) and solenoid magnet currents
- \rightarrow mainly improve cavity surface
- \rightarrow field emission (multipacting, sparks) may cause damage of cavity, cathode, coupler, RF window
- \rightarrow vacuum survey during the conditioning process (interlocks)

2nd Problem: dark current is emitted (mainly from cathode) during the full RF pulse duration

- \rightarrow large amount at high power levels / long pulses
- \rightarrow may destroy cathode and diagnostics (e.g. screens)
- \rightarrow can be transported until the undulator and damage it

PITZ1 results - Damages due to dark current ? -

We experienced damages on screens and cathodes.

- Gun conditioning -

repetition rate	10 Hz	5 Hz	10 Hz
rf pulse length	0.5 ms	1.3 ms	1.0 ms
peak power at gun	4 MW	4 MW	3 MW
average power	20 kW	26 kW	30 kW
duty cycle	0.5 %	0.65 %	1.0 %

limited by 5 MW klystron and water cooling system

necessary upgrades: - 10 MW klystron

- new cooling system

- Dark current measurements -

Dark current measurements in dependence on

- accelerating gradient at the cathode
- cathode material (Mo / Cs₂Te)
- solenoid current and its time development

- Dark current studies -

side view of the cathode

Possible dark current sources:

- Cs₂Te film
- edge of Cs2Te film
- Mo plug
- edge of Mo plug

 \rightarrow field emission model for the cathode

Discrepancy between simulation and measurement

 \rightarrow additional emission mechanisms could contribute

μ A)

lark current (

front view of the cathode

- Dark current studies -

The PITZ laser system

using sc linac technology for VUV-FEL / XFEL \rightarrow long pulse trains

The PITZ laser system

4.4.2006, LAL Orsay

Laser parameters

Longitudinal laser pulse shape can be changed between

gaussian and flat-top e.g. before 23.6.03 e.g. after 23.6.03 $FWHM = 7 \pm 1ps$ FWHM ≈ 19-23 ps rise / fall time 5-7 ps time time

Minimum measured emittance:

≥ 3 mm mrad

1.6 mm mrad

4.4.2006, LAL Orsay

Laser parameters

Transverse laser profile (pictures from the 'virtual cathode')

- Bunch charge -

- charge measurement with FC or ICT
- measured charge depends on
 - position of measurement device
 - phase of the RF field
 - solenoid current

A.Oppelt: PITZ

- Beam size measurements -

- measured with YAG screen
- study dependence on
 - screen position
 - RF phase
 - solenoid current

Application: **Determination of the reference phase** (phase of maximum energy gain) → measure the electron beam size

as function of the launch phase

4.4.2006, LAL Orsay

- Momentum measurements -

Principle of momentum measurement

$$B
ho = rac{mv}{e} = rac{p}{e}$$

- Momentum and momentum spread -

Measurement as function of the RF phase:

max. mean momentum: 5.20 MeV/c

min. rms momentum spread:

16 keV/c

phase difference between P_{mean}^{max} and P_{RMS}^{min} only ~5 degrees

4.4.2006, LAL Orsay

- Bunch length measurements -

Principle:

- electron bunch hits radiator (aerogel / quartz) and radiates photons
- analysis of time development with streak camera

phase space reconstruction = approximation of real phase space

- Emittance measurements -

Single-slit scan technique

The size of the beamlet is measured for three slit positions:

$$y_n = \langle Y \rangle + n \cdot 0.7 \sigma_y$$
$$n \in \{-1, 0, 1\}$$

4.4.2006, LAL Orsay

- Emittance measurements -

Simulated emittance for optimum parameters

Charge: 1 nC

Max. gradient: 42 MV/m Longitudinal laser profile:

– flat top

- 20 ps FWHM
- 5 ps rise/fall time

Transverse laser profile:

homogeneous

 $-\sigma_{x,y}$ = 0.6 mm

Simulated EmittanceXY / π mm mrad

- Measured emittance -

e.g. measured transverse emittance as function of the current in the compensating magnet

A.Oppelt: PITZ

- Thermal emittance -

• thermal emittance adds in quadrature to the other emittance contributions:

 $\varepsilon_{n} \approx (\varepsilon_{th}^{2} + \varepsilon_{rf}^{2} + \varepsilon_{sc}^{2})^{\frac{1}{2}}$

- \rightarrow thermal emittance sets the lower emittance limit of an electron source
- define operation conditions such that $\epsilon_{rf} << \epsilon_{th}$ and $\epsilon_{sc} << \epsilon_{th}$: Q~2-3 pC, σ_t =3 ps, E_0 < 34 MV/m, laser spot size: 0.48 - 0.55 mm

- Thermal emittance -

- thermal emittance is individual for each photocathode
- depends on gun operation history and cathode surface chemistry: $\mathcal{E}_{th} = \mathcal{E}_{th} (t)$
- more cathode studies are needed (INFN-LASA)

- Thermal emittance -

Impact of the electric rf field

Extrapolation for the XFEL case (emittance budget: 0.9 mm mrad)

$$\varepsilon = \frac{\sigma_x}{\sigma_y} \sqrt{A + B \sqrt{E_{field}}} \approx 0.7 \ mm \ mrad$$

Assuming emittance growth

4.4.2006, LAL Orsay

The PITZ1 setup

Tunnel view at the end of the PITZ1 phase (November 2004)

Facility upgrade - Towards PITZ2 -

4.4.2006, LAL Orsay

PITZ2 research program

PITZ2 – a large extension of the facility and its research program

- **study the emittance conservation principle:** install booster and new diagnostics beamline
- benchmark theoretical understanding of photoinjectors: improved simulation tools, detailed comparison simulation vs. measurement
- reach XFEL requirements (0.9 mm mrad @ 1 nC): increase RF field at the cathode, improve laser system and photocathodes
- **study XFEL parameter space:** low charge, short bunches, higher repetition rates
- test new developments:

RF system, gun cavities, diagnostics, cathodes, laser

DESY

Collaboration partners

- **BESSY Berlin: ICTs, magnets, PS, vacuum expert**
- CCLRC Daresbury: phase space tomography module
- DESY Hamburg: new cavities (Gun3, Gun4, CDS booster)
- INRNE Sofia: emittance measurement system (EMSY)
- INR Troitsk: CDS booster cavity
- LAL Orsay: high energy spectrometers
- LASA Milano: cathode system
- LNF Frascati: RF deflecting cavity
- MBI Berlin: laser system
- TU Darmstadt: beam dynamics simulations
- Uni Hamburg: bunch length measurement
- YERPHI Yerevan: accelerator controls

Funding through DESY (BMBF), HGF, EC (IA-SFS, EUROFEL)

- The emittance conservation principle-

Solenoid strength, drift length, and accelerating gradient are definded with the "invariant envelope" technique:

- → place entrance of booster at local emittance maximum and beam size minimum
- \rightarrow define accelerating gradient by:

$$\gamma'_{boost} = \frac{2}{\sigma_w} \sqrt{\frac{\hat{I}}{3I_0\gamma}}$$

 γ'_{boost} = energy gain booster σ_w = rms beam size \hat{I} = peak current γ = mean beam energy

 $I_0 = \text{Alvfen current}$

(17 kA for electrons)

\rightarrow check that the principle works and optimize it !

4.4.2006, LAL Orsay

- The booster cavities -

- use a n.c. TESLA prototype cavity as preliminary booster
- the final booster cavity specially designed for PITZ is in production and will be available in 2007

For the realization of PITZ2

- upgrade power and cooling systems
- take into operation a 2nd RF system for the booster
- install booster, beam dump, new diagnostics

\rightarrow start with a minimum version of PITZ2

4.4.2006, LAL Orsay

Towards PITZ2 - The PITZ1.5 setup-

after the booster: 13.4 MeV

after the gun: 4.6 MeV

4.4.2006, LAL Orsay

Towards PITZ2 - The PITZ1.5 setup -

View of the extended PITZ facility (Summer 2005)

- First results from PITZ1.5 -

4.4.2006, LAL Orsay

- The 10 MW MBK klystron -

- 10 MW klystron necessary to reach gradients above 42 MV/m in the gun
- use multi beam klystron from Thales
- RF output via two 5 MW arms → power combiner needed

- High power tests of a gun cavity-

max. mean momentum \leftrightarrow gun power

- Gun1 with 10 MW klystron tested up to ~57 MV/m in 2005
- Goal for XFEL: reach 60 MV/m \rightarrow continue tests in 2006

Problem:

4.4.2006, LAL Orsay

A.Oppelt: PITZ

50

Summary

- sophisticated e⁻ sources are needed for the operation of FELs
 → RF photo cathode guns
- **PITZ** is a dedicated test facility at DESY in Zeuthen
- **PITZ1** has been successfully finished, and a completely characterized gun has been installed at the VUV-FEL
- the facility upgrade is ongoing, a preliminary booster and first PITZ2 diagnostics have been taken into operation
- next steps are: study emittance conservation principle and approach the XFEL emittance requirements
- in parallel: do gun power tests and prepare new guns