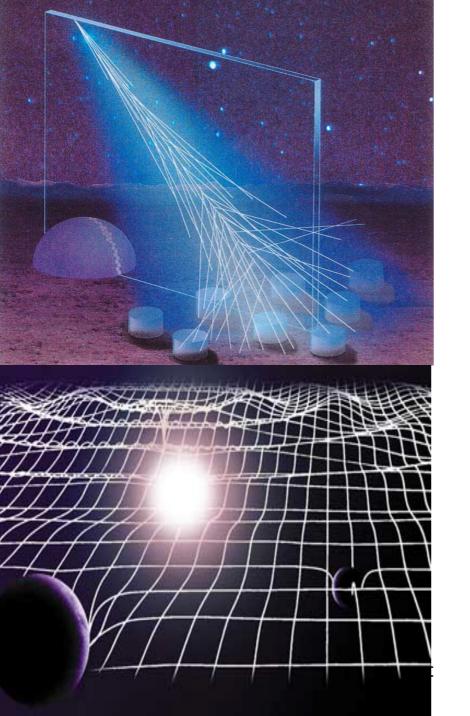
Groupe V : Astroparticules, frontière entre la physique des particules et la thématique de l'astrophysique :

- •Détection:
 - Techniques très diverses :
 Imagerie, <u>Calorimétrie (gerbes atmosphériques)</u>,
 <u>Interférométrie</u> ...
- Messagers,
 - -Rayons cosmiques (chargés), Gamma,
 - -Neutrinos, **Ondes gravitationnelles**,

Sources possibles

Peu ou pas d'origines communes

Ondes gravitationnelles


déformation d'astres compacts

- Supernovae gravitationnelles
- Binaires spiralantes
- Désexcitation trous noirs
- Pulsars (déformations)
- Sursauts gamma?

Rayons Cosmiques

accélération de particules et/ou désexcitation de particules très massives

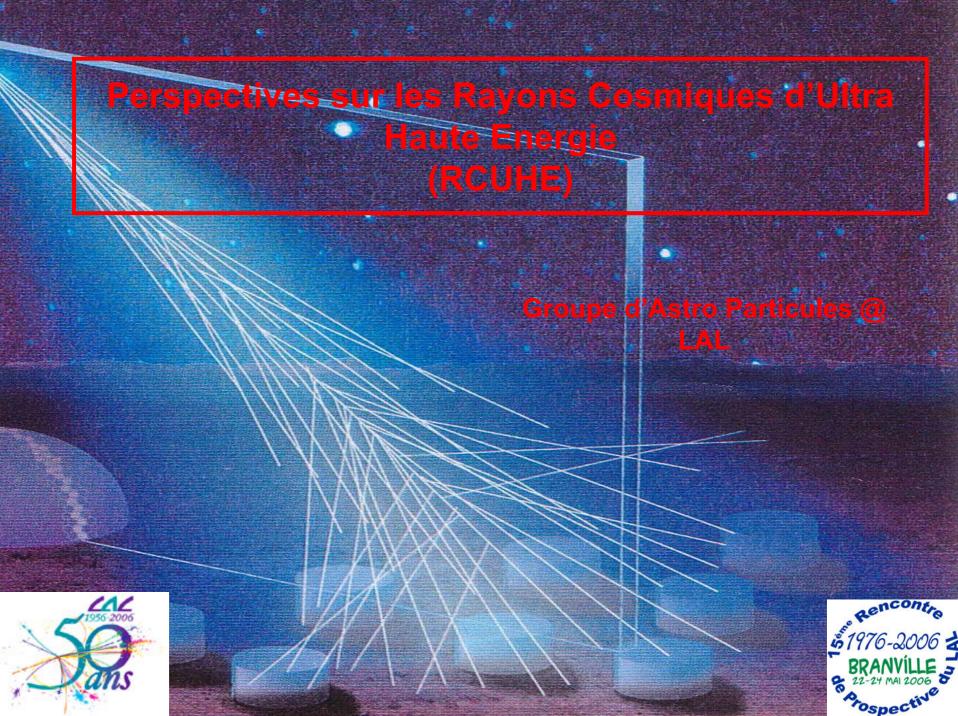
- Vestiges de supernovae
- Jets relativistes
- Pulsars (accélération)
- Sursauts gamma?
- Reliques primordiales

Sommaire:

 Perspectives avec les rayons cosmiques chargés

Sylvie Dagoret-Campagne

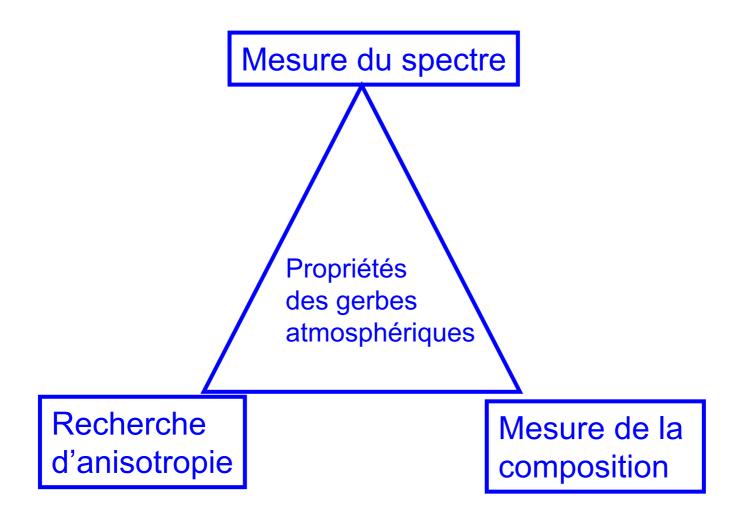
 Perspectives avec la détection d'ondes gravitationnelles,


Nicolas Leroy

Conclusion

Participants aux discussions

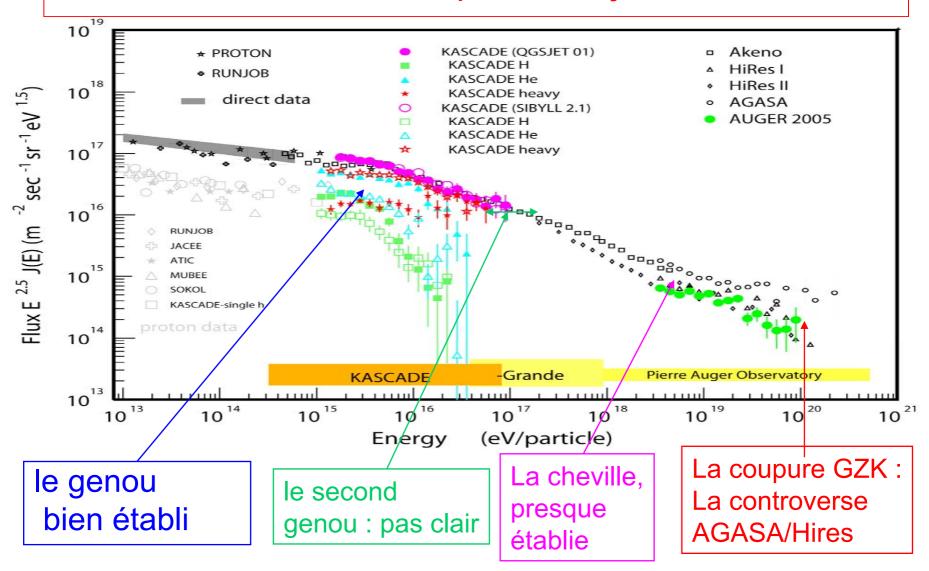
- Fabien Cavalier
- Patrice Hello
- Nicolas Leroy


- Alain Cordier
- Sylvie Dagoret-Campagne
- Delphine Monnier Ragaigne
- Xavier Garrido
- Marcel Urban

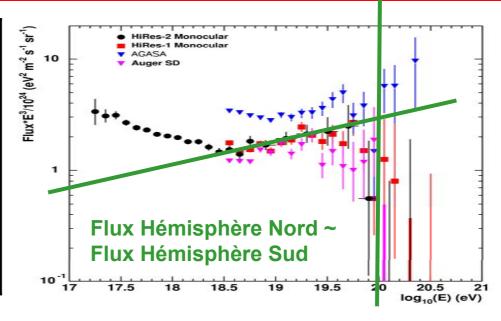
Motivation

- La physique des RCUHEs (10¹⁸- 10²⁰eV) ?
 - Nature (protons, noyaux (lourd/léger), gammas, neutrinos ou particules exotiques)
 - Sources (galactique/extragalactique, distance, distribution spatiale et leur nature, identification avec des sources astrophysiques connues, des GRB, des reliques primordiales),
 - Physiques des interactions (physique hadronique au dessus de l'énergie des accélérateurs E_{LHC}=10¹⁷eV)
- Que peut t'on en dire aujourd'hui?
- Qu'allons nous apprendre dans les 5 ans?, dans les 10 ans?
- L'avenir de la physique des RCUHEs (futures générations de projets, R&D sur les mesures de gerbes atmosphériques)

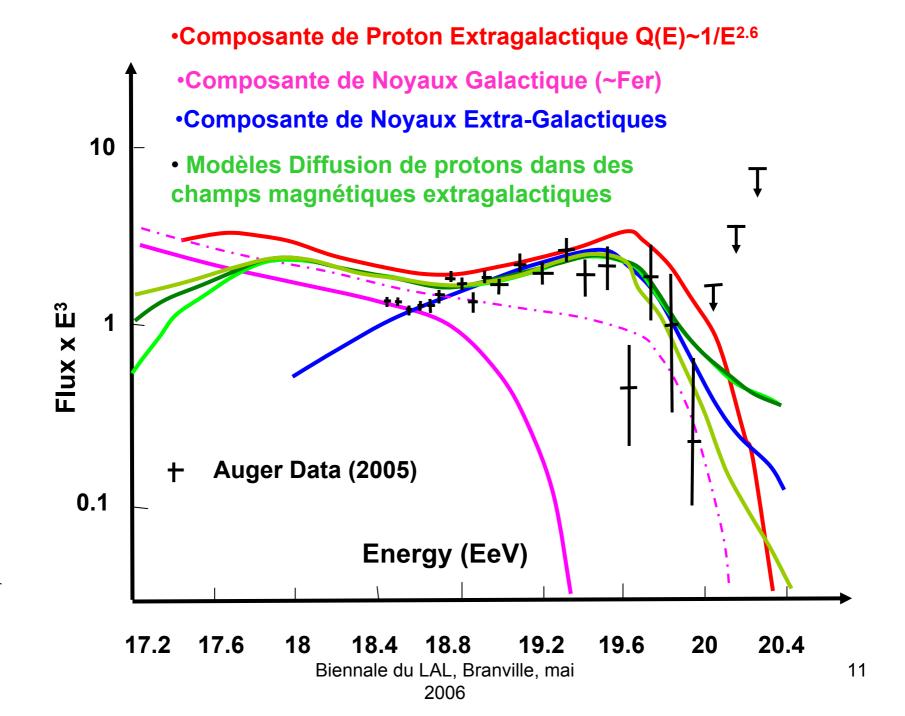
Outils pour cerner le mystère des RCUHE



Le spectre



La mesure du spectre aujourd'hui

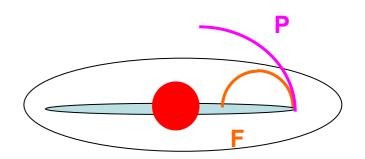

La coupure GZK existe t'elle?

Expérience	Exposition (km².sr.an)
AGASA	1645
Hires (Mono)	5000
Hires (Stéréo)	2500
Auger ICRC2005	1742
Auger/1an,	10 ⁴

ICRC2005	Nb. Ev prédits	Nb Ev observés	probabilité	écart
Hires Mono	E>10 ^{19.75} e V: 42.8	E>10 ^{19.75} e V: 15	2.4.10-4	3.5σ
Auger	E>10 ²⁰ eV:	E>10 ²⁰ eV:	2.5.10 ⁻³	2.4σ

Hypothèse	Nb ev GZK dans Auger/an
Pas GZK	33
GZK optimiste	3-5
GZK pessimiste	0.4-08

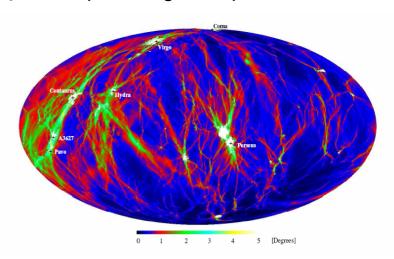
Anisotropie



Recherche d'anisotropie, Localisation de sources

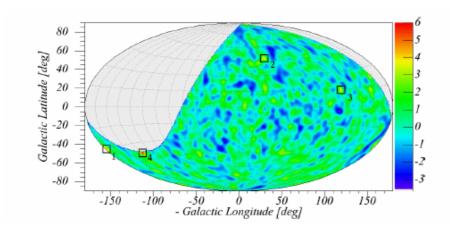
1. Déflexion continue dans un champs magnétique réguliers (lentille magnétique):

$$R_{larmor}$$
 (Kpc)= 10 E(EeV)/B(μ G)/Z
0= 6° Z D(Kpc) B(μ G)/E(EeV)

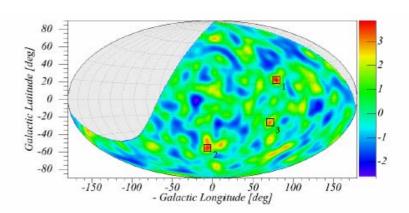


2. Dispersion angulaire due à la composante turbulente des champs magnétiques:

 $\delta\theta = 0.5^{\circ}Z(D/10Mpc)^{\frac{1}{2}}(L_c/1Mpc)^{\frac{1}{2}}(B/nG)/E(10^{20}V)$

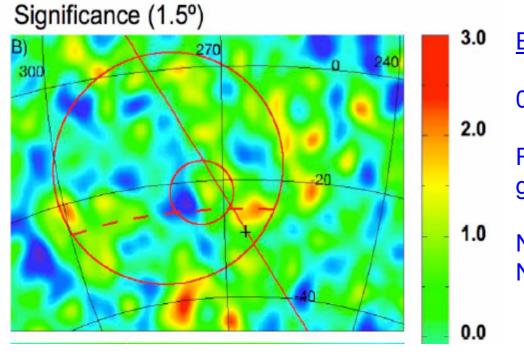

- A partir de quelle énergie peut t'on espérer apercevoir de l'anisotropie ?
 - •Petite échelle (source ponctuelle) et grande échelle (structure)
- Que peut ton apprendre sur les sources?

Carte des déflections de protons (4.10¹⁹eV) émis par des sources extragalactiques (d<107Mpc) dans les champs extragalactiques



Recherche de points sources : Résultats d'Auger à basse énergie

Significance map 1EeV<E<5EeV 2° filtering (~27500 events)


Significance map E>5EeV 4° filtering (~1400 events)

Besoin de plus de statistique à haute énergie:

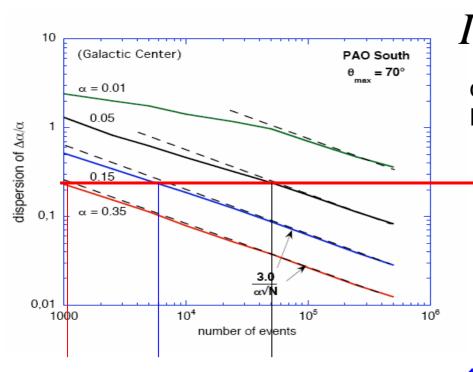
~ 10000 événements 10¹⁹eV<E<6.10¹⁹eV en 5 ans,

Résultat d'Auger: Pas d'anisotropie en direction du centre Galactique (α =274°, δ =-22°)

Limite supérieure sur le flux d'une source en plus du flux de CR: $\Phi s (SD) < 2.5 \times 10^{-15} \text{ m}^{-2} \text{ s}^{-1} \text{ à } 95\% \text{ CL}$ $\Phi s (Hybrid) < 1.2 \times 10^{-13} \text{ m}^{-2} \text{ s}^{-1} \text{ à } 95\% \text{ CL}$

Etude d'Auger:

0.8EeV<E<3.2EeV


Rayon de 5° autour du centre galactique

Nombre d'ev détectés: 24.3 Nombre d'ev prédits:23.9

Excès d'AGASA (4.5σ) et de SUGAR (2.9σ) non confirmés

Source de neutrons exclue

Anisotropie à grande échelle : dipole, quadripole, spectre de puissance angulaire...

$$\mathbf{I}(\vec{u}) = \frac{N}{4\pi} (1 + \alpha \vec{D} \cdot \vec{u}), \alpha \vec{D} = \int \mathbf{I}(\vec{u}) \vec{u} d\Omega$$

α amplitude de la composante dipolaire, N nombre d'événements

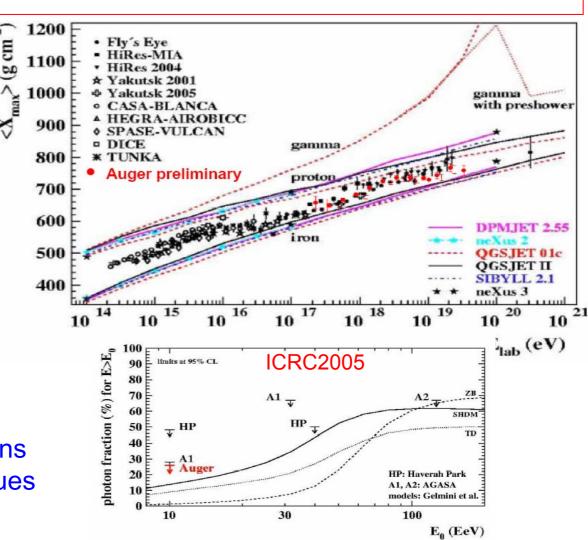
Sensibilité à 5_{\sigma}

α=1% impossible

10¹⁹eV<E<5.10¹⁹eV (2000 ev par an)

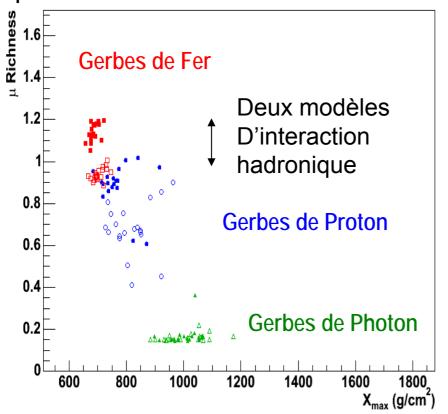
5.10¹⁸eV<E<10¹⁹eV (19000 ev par an)

Composition


Etude de la composition avec la Fluorescence: Mesure de la profondeur du maximum de la gerbe X_{max}

Transition lourd -> léger entre 10¹⁷ eV et 10¹⁹eV ?

(Composante galactique -> extragalactique par exemple)


La fraction de photons dans Le flux de rayons cosmiques est inférieure à 26 %

Perspectives sur la mesure de la composition : la séparation des composantes muonique / électromagnétique combiné avec la mesure du X_{max}

Thèse de Xavier Garrido en 2008!

$$S_{\mu}/S_{em}$$
 à 1km (E=10¹⁹eV, θ =45°)

Objectifs:

- Identification
- •Mesure de $\sigma_{p-air}(E)$

Muons:

- Analyse détaillée des traces de FADC, reconnaissance de pics ,
- Scintillateurs de muons pour Auger Sud (Upgrade d' Auger Sud),
- FADC(100 MHz) pour Auger Nord,

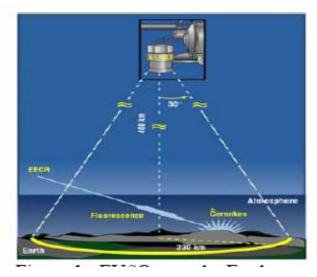
X_{max}:

 Élévation maximale des téléscopes 30° -> 60° (Upgrade d' Auger Sud)

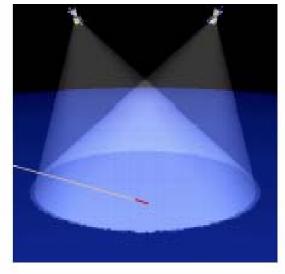
En résumé

A court terme :

- Existence de la coupure GZK avec AUGER (acceptance = 10⁴km².sr),
- Limite supérieure du flux de photons,
- A moyen terme (5ans):
 - mesure précise de la cheville (spectre et <u>composition</u>)
 - Auger Upgrade (au sud 2007-> 2010)
 - TA/TALE (cette année dans l'UTAH) (1400 km².sr)
 - recherche de sources (et multiplets), pour E> 10¹⁹ eV
- A plus long terme (10-20 ans):
 - Etudes des anisotropies à grande échelle (AUGER N+S)
 - Etude des anisotropies à petite échelle et la mesure du spectre devrait permettre de déterminer la densité des sources pour E> 10 ¹⁹eV dans les 10-15 ans (limitation possible du champ magnétique extragalactique)
 - Mesure détaillée de la coupure GZK : il faut une acceptance 10 à 100 fois plus grande que celle d'Auger.
 - Satellite mesurant la fluorescence,
 - Grands réseaux radio,


Futurs projets

Les projets basés sur des techniques « standards »


- Upgrade d'Auger Sud: dédié à l'étude de la cheville et à la composition
- Auger Nord: spécialement dédié pour la recherche des anisotropies à grande échelle 10⁴km².sr par an,
- Telescope Array (TA/TALE) + Hires (Nord), (acceptance ~ 15% Auger)
- Fluorescence satellites acceptance effective ~ 10⁵ km².sr par an, couverture complète du ciel:
 - EUSO,OWL(stéreo mode),

H=400km, R=230km

EUSO (mono)
~effective aperture:
16xAuger

OWL(stéreo) ~effective aperture: 20xAuger

H=1200km, R=600km

Upgrade d'Auger

- Elévation des Telescopes 0 ->60° pour mieux mesurer le X_{max} les gerbes de faible énergie,
- Réseau Infill (espacement des cuves 1.5km-750m)
- Scintillateurs enterrés (projet **AMIGA)** pour compter les muons
 - 20 km²

Reconstruction du nb de muons avec **AMIGA**

(minos)

Proton OGSJET02 proton 0.16 -Iron QGSJET02 Proton Sibvll 0.14 Iron Sibyll 0.12 Fer 0.06 0.04 0.02 Nb. Muons

Biennale du LAL, Branville, mai 2006

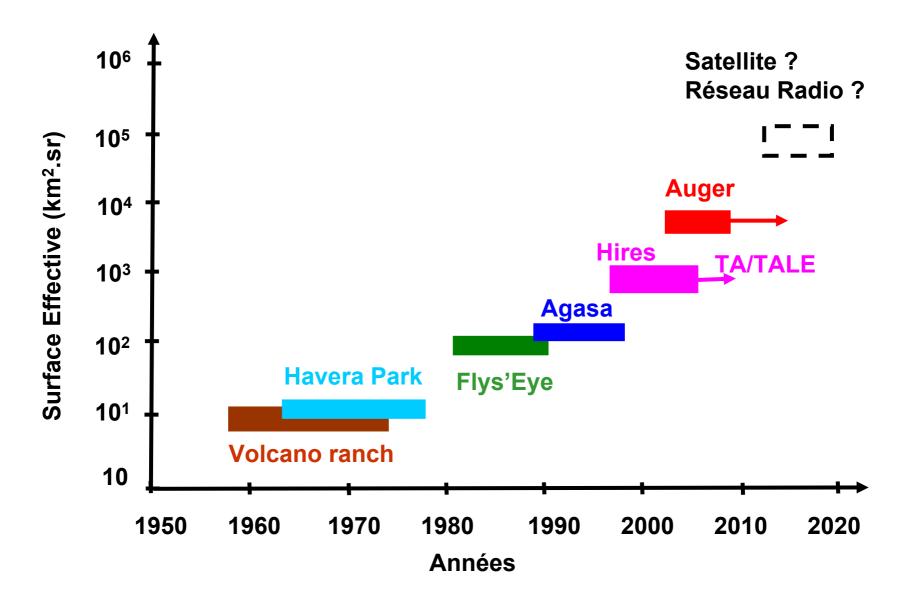
Les projets basés sur la radio détection

- Les grand réseaux radio ,
 - On utilise l'émission radio des gerbes en replacement de l'émission de fluorescence ou de lumière Cerenkov optique (antenne peu chère ou cornet) cycle utile 100 % (mais beaucoup de bruit anthropomorphique).
 - R&D Codalema(LAL), Lopes(Kascade), Radio à Auger-Sud, Amber à TA,
 - Réseaux de Radio Astronomie en large bande utilisés en interférometrie (potentialité à long terme si aménagement pour la détection des gerbes).
 - LOFAR (20-240 MHz), Acceptance~ ~10⁵ km² pour la radioastronomie,
 - SKA (100 MHz-25GHz), Acceptance ~106 km² pour la radioastronomie,
- Echo Radar sur la charge de la colonne de densité induite par une gerbe atmosphérique (pas de R&D), Acceptance ~10⁵km².sr à 10²⁰eV.

Radio detection associated with particle detectors: The <u>measurement</u>

 (Coherent ?) Geosynchrotron emission with dipole antenna by Codalema group (R&D in Auger South, 10-100MHz)

- Coherent Molecular Bremstrahlung emission detection with microwave by Hawai group (AMBER, R&D in TA, 5-20 GHz)
 - 4 pixels here, 4 channels per pixels (2 orthogonal polarisation, 2 frequency channels in microwave)



Conclusions sur les perspectives

- La compréhension de l'origine des RC nécessite la combinaison de 3 mesures: le spectre détaillé (et notamment la coupure GZK), l'anisotropie du ciel entier et la composition des RCs
- Durant les ~10 prochaines années, le programme d'upgrade d'Auger sud est particulièrement intéressant pour <u>l'étude de la</u> composition (grâce au comptage de muons) dans la gamme 10¹⁸eV -10¹⁹eV,
- Auger Nord permet l'étude des anisotropies à grande échelle ~10 ans,
- Enfin la radio détection des gerbes pourrait atteindre une couverture suffisante (>10⁵km².sr) pour la mesure détaillée de la coupure GZK
 - $R&D \sim 5-10 \text{ ans}$
 - Les grands réseaux radio dans 10-20 ans.

