

Security aspects

(based on Romain Wartel's slides at ISGC Taiwan 2008)

David Bouvet – IN2P3-CC

Planning for Grid Deployment and Usage in South Africa Meraka Institute, CSIR campus, Pretoria 12-13 may 2008

www.eu-egee.org

- What is a "Security Incident"?
 - A security incident is the act of violating an explicit or implied security policy
- What can motivate attackers?
 - Money (and little risk of being caught)
 - Less likely: political motivation, challenge, ego, fame, etc.

• How do attackers often proceed?

- Most attacks are partly/fully automated
- First find an entry point (weak network service, stolen credentials, etc.)
- Install necessary toolkit to maintain a 'quiet' access
- Implant payload (DDOS, Botnet, SPAM engine, etc.)
- Harvest additional credentials

Security Incidents Statistics

Enabling Grids for E-sciencE

- Attacks against other sites (ex: DDoS)
- Storage, distribution or sharing of illegal/inappropriate material
- Disruption of service, damage to user data

This can involve:

- Damage to the project/sites reputation
- Legal/financial actions against participants
 - <u>http://proj-lcg-security.web.cern.ch/proj-lcg-security/RiskAnalysis/risk.html</u>

EGEE Security groups

Enabling Grids for E-sciencE

- JSPG is producing a set of security policies
- The following policies have been approved by the EGEE PEB and the WLCG GDB
 - Grid Security Policy (= top level policy)
 - Grid Acceptable Use Policy
 - Grid Site Operations Policy
 - Site Registration Policy
 - Audit Requirements Policy
 - Grid Security Incident Response Policy
 - VO Security Policy
 - VO Operations Policy
 - User Registration Policy
 - Approval of Certification Authorities

Certification Authorities

- Enabling Grids for E-sciencE
- IGTF (International Grid Trust Federation) is a body to establish common policies and guidelines between its Policy Management Authorities (PMAs) members.
 - current PMAs :
 - Europe: EUGridPMA
 - Asia-Pacific: APGridPMA
 - Latin America, Carribean, North America: TAGPMA
- To create a new PMA, see <u>http://www.gridpma.org/</u> or contact David Groep (<u>davidg@nikhef.nl</u>) to get more information on the procedures.
- In EGEE, there is the possibility to use "catch-all" CA
 - France (CNRS) for all non HEP VOs
 - CERN for HEP VOs

⇒ African users can ask CNRS or CERN to get their certificates (need to have a minimal structure about identity verification on new certificate request: one person per lab)

- ROC Security Contacts are part of the EGEE
 Operational Security Coordination Team (OSCT)
- Incidents coordination: ROC Security Contact on duty

- The EGEE Operational Security Coordination Team has three main activities:
 - Incident Response improvement
 - Security service challenges (SSC) SSC1, SSC2, SSC3 (in work)
 - <u>http://cern.ch/grid-deployment/ssc/SSC_2/SSC_2_google.html</u>
 - IR channels (lists, IM)
 - IR scenarios
 - Incident detection and containment (=monitoring)
 - Several monitoring tools available to the sites
 - Central security tests (SAM)
 - Incident prevention
 - Best practice ex: <u>https://cic.gridops.org/index.php?section=roc&page=securityissues</u>
 - Training events

- A large part of the incident response coordination consists in managing the flow of information
- The role of the coordinator is to:
 - Process the available information as soon as possible and follow the most likely leads
 - Provide accurate information to the sites
 - Contact and follow up with the relevant CERTs/CSIRTs
 - Ensure the process does not stall
- The objective is to:
 - Understand what was the vector of attack (ex: entry point)
 - Ensure the incident is contained
 - Establish a detailed list of what has been lost (ex: credentials, data)
 - Take corrective action to prevent re-occurrence

• Main issues:

- It is essential to establish and maintain trust between the sites
- Obtain relevant and accurate information and collaboration from all possibly affected sites
- Cope with the information flow (large incidents) (during a multi-site incident, the coordinator had to process 500+ incoming emails during the first 5 days, including 280 at day 3)
- Redistribute the information with an appropriate level of details
- Prevent information leaks, which are a serious problem.
 They can discourage other sites from sharing their findings in the future and expose sensitive information (personal details, etc.)

SSC3 – Early results

Enabling Grids for E-sciencE

SSC3: initial challenge

- Training and dissemination requires significant efforts, as it is difficult to improve security practices at the sites
- Tests (security service challenges) are extremely useful
- Increased expertise in the team to manage multi-sites security incidents
- Need to build and maintain trust between the participants
- Cooperation and sharing with peer grids (ex: OSG) and with other involved parties (ex: NRENs) is essential

- **IGTF** web site: http://www.gridpma.org/
- OSCT web site: https://twiki.cern.ch/twiki/bin/view/LCG/OSCT
- **OSCT** web site: http://cern.ch/osct
- **Incident response guide:** https://edms.cern.ch/file/428035/LAST_RELEASED/Inci dent_Response_Guide.pdf

Discussion

EGEE-II INFSO-RI-031688

15