<u>Single top quark</u> physics at the Tevatron

MICHIGAN STATE

Séminaire LAL, 1er juillet 2008

<u>Outline</u>

- Introduction
- Single top quark production
- DØ results
- CDF results
- LHC outlook
- Conclusions

Fermions acquire mass through Higgs coupling

Top quark

Top quark

Key to electroweak symmetry breaking

<u>Top quark electroweak</u> charged current interaction

SM single top quark production

Tevatron:

$$\sigma_{tot} = 3 \text{ pb}$$

LHC:

 $\sigma_{tot} = 326 \text{ pb}$

Reinhard Schwienhorst, Michigan State University

Associated production

Modified Wtb coupling

Tevatron single top goals

Production cross sections: NLO calculation: *s-channel* **0.88 pb (±8%)**

t-channel **1.98 pb (±11%)**

- Discover single top quark production!
- Measure production cross sections \rightarrow CKM quark mixing matrix element V_{tb}
- Look for physics beyond the standard model
 Coupled to the heavy top quark
- Study top quark spin correlations
- Understand as background to many other searches
- Explore analysis techniques that will also be used elsewhere

Batavia, Illinois <u>Experimental setup:</u> <u>Fermilab Tevatron in Run II</u>

Proton-antiproton collider CM energy 1.96TeV → Energy frontier Instantaneous luminosity >250E30cm⁻²s⁻¹ - ~ 4 interactions per crossing, 1.7M crossing per second → Luminosity frontier

Tevatron luminosity

Collider Run II Integrated Luminosity

Single top event selection

- Basic event signature (e or μ)
 - Single lepton trigger or lepton+jets trigger
 - One high- E_T leptons
 - $E_T > 20 \text{ GeV} \text{ or } 15 \text{ GeV}$
 - Missing transverse energy
 - Missing E_T > 25 GeV or 15 GeV
 - -2-3 high- E_T jets (2-4 jets)
 - $E_T > 15 \text{ GeV}$
- At least one b-tag Expect ~ 50 signal events per fb⁻¹
- After b-tagging
- S:B ~ 1:20

Single top analysis

discriminating multivariate signal likelihood statistical analysis Event kinematics Object kinematics Object kinematics Angular correlations

- Classifiers:
 - Likelihood function
 - Neural network
 - Bayesian neural networks

- Matrix Element
- Boosted decision trees

Measurement Procedure

- Separate optimization for each process
 - s-channel, t-channel
 - Different processes, sensitivity to new physics
 - s+t combined
 - Assuming ratio of SM XS
 - Maximize sensitivity to SM single top
 - Measure V_{tb}

- Update to 0.9 fb⁻¹ analysis (3.4 σ, PRL 98, 181802 (2007))
 - Improved Bayesian Neural Network analysis
 - Improved Matrix Element analysis

Reinhard Schwienhorst, Michigan State University

Bayesian neural networks

- NN with three layers
 - 24 in put nodes (variables), 40 hidden nodes
 - Each node and each connection has a weight
- Bayesian Idea:
 - Rather than finding one value for each weight, use many values
 - Determine the posterior probability for each weight
 - Sample from this posterior
 - Here: Average over 100 networks

Reinhard Schwienhorst, Michigan State University

Matrix element analysis

• Signal and background probability for each event is calculated from differential cross section

$$P_{Signal}(\vec{x}) = \frac{1}{\sigma_S} d\sigma_S(\vec{x}) \quad \sigma_S = \int d\sigma_S(\vec{x})$$

- Integration over final state momenta
 - And over reconstructed momenta, transfer function
- Include ME for s-channel, t-channel, Wbb, Wcg, Wgg
- In 3-jet bin also $tt \rightarrow l+jets$ Reinhard Schwienhorst, Michigan State University

Reinhard Schwienhorst, Michigan State University

- Combination using BLUE method
 - Using large sets of ensembles for weights and correlations

DØ 0.9 fb⁻¹

Reinhard Schwienhorst, Michigan State University

- Analyses based on 2.2 fb⁻¹
- Increased acceptance
 - MET trigger
 - more muons

- Now including 3-jet channel
- Improved background model

Multivariate likelihood function

- Likelihood functions built from 7 variables (10 for 2-tags)
 - Kinematic variables
 - b-tag NN output
 - kinematic solver
 - Assign which jet comes from top decay
 - t-channel ME
 - No transfer functions, no integration

CDF Run II Preliminary, 2.2 fb⁻¹

Multivariate likelihood function

• Likelihood functions built from 7 variables (10 for 2-tags)

Expected/observed significance: 3.4σ/2.0σ

Measured cross section: $\sigma(s+t) = 1.8^{+0.9}_{-0.8} \text{ pb}$

Neural Networks

- 4 separate s+t networks
- By jet and b-tag multiplicity
- Built from 10-14 variables each
 - Kinematic variables
 - angular correlations
 - B-tag NN output

Neural Network Result

Reinhard Schwienhorst, Michigan State University

Matrix element

- Analyze 2-jet and 3-jet events

- Include ttbar matrix element for both 2-jet and 3-jet events
- Include b-tag NN as weight in likelihood ratio

CDF combination

• NEAT: NeuroEvolution of Augmenting Topologies

- Optimization procedure chooses network structure and S-Channel weights CDF Run II Preliminary, L = 2.2 fb T-Channel tt (Dilepton)

Events

160

140

All channels

70 E

- And final binning
- Train a few to also find optimum when

Reinhard Schwienhorst, Michigan State University

tt (Non-Dilepton)

W+bb

Mistags

Z+iets

Other CDF analyses

- Boosted decision trees
 Not in combination
- Separate s-channel search
 - σ < 2.77 pb (95% CL)
- |Vtb| measurement using NEAT output

Reinhard Schwienhorst, Michigan State University

Measured cross section:

 $\sigma(s+t) = 1.9^{+0.8}_{-0.7}$

Tevatron summary

CDF and DØ tb+tqb Cross Section

D0 outlook

- Currently analyzing 2.4fb⁻¹ of data
- Goal: Show the updated result at Moriond 2008 (March)

Have a result by APS 2008 (April)

Have a result by June (this talk)

Have a result by ICHEP (July)

Have a result soon!

• Main problems:

- Completely updated W+jets background model
 - New Algen version
- Updated trigger, detector
- Ambitious analysis: reach "observation of" sensitivity

- Searches for new heavy boson W': q W' t $\overline{q'}$ \overline{b}
 - CDF prelim result, 1.9fb⁻¹:
 M > 800 GeV and M > 825 GeV
- Similar: DØ Susy H⁺ search
- Flavor-changing neutral currents:

- Measure V_{tb} to few %
- Study spin correlations

SM Single Top at the LHC

- Backgrounds are similar to Tevatron, yet different
 - W+jets less important
 - tt is dominant background
- t-channel observation early
 - Large cross section
- s-channel and Wt with 30 fb⁻¹
 - Separate by b-tag and jet multiplicity

- Dedicated searches for specific signatures
 - New heavy boson W'
 - FCNC interactions via gluon, photon, Z
 - Anomalous couplings
- Measure SM cross sections in detail
 - And compare their ratios

T.Tait, C.-P.Yuan, Phys.Rev. D63 (2001) 0140018

Reinhard Schwienhorst, Michigan State University

Conclusions/Outlook

- The Tevatron experiments are getting to know the top quark very well
- Both experiments have evidence for single top quark production
- Tevatron dataset will increase to over 5 fb⁻¹
 - 5 sigma observation of single top
 - Separate s-channel from t-channel
 - Measure top quark spin correlation
- LHC:
 - Precision measurements in single top
 - Look for new physics in single top