

- heavy ion collisions & QGP
- heavy ion collisions @ LHC
- ALICE detector overview
- ALICE physics program

The 11 most important questions...

...to understand the universe at its two extremes: the very large and the very small

Connecting QUARKS with the COSMOS

Eleven Science Questions for the New Century

NATIONAL RESEARCH COUNCIL

- 1. What is dark matter?
- 2. What is the nature of dark energy?
- 3. How did the universe begin?
- 4. Did Einstein have the last word on gravity?
- 5. What are the masses of the neutrinos, and how have they shaped the evolution of the universe?
- 6. How do cosmic accelerators work and what are they accelerating?
- 7. Are protons unstable?
- 8. What are the new states of matter at exceedingly high density and temperature?*
- 9. Are there additional space-time dimensions?
- 10. How were the elements from Iron to Uranium made?
- 11. Is a new theory of matter and light needed at the highest energies?

*"At high energies, neutrons and protons may "dissolve" into a undifferentiated "soup" of quarks and gluons, which can be probed in heavy-ion accelerators."

National research committee on the physics of the universe (2003)

"When the energy density ε exceeds some typical hadronic value (~ 1 GeV/fm³), matter no longer exists of separate hadrons (protons, neutrons, etc), but as their fundamental constituents, quarks and gluons. Because of the apparent analogy with similar phenomena in atomic physics we may call this phase of matter the QCD (or Quark Gluon) plasma."

E.V. Shuryak, Phys. Rept. 61 (1980) 71

What QCD tells

Schematic space-time evolution of a heavy ion collision

strategy: use produced particles as probes of the medium

6

Not that simple...

the same collision in real life

a simulated heavy ion collision

1. Measure a quantity

- whose value (from theoretical predictions) is expected to be different with or w/o a QGP. Most appropriate: central AA collisions
- 2. Validate the measurement
 - by comparing the quantity to theoretical predictions with & w/o QGP
 - by comparing the quantity to the same quantity measured in pp (reference), then in pA & peripheral AA (no QGP but cold nuclear effects) and then in central AA
- 3. Validate the result
 - repeat 1. and 2. with as many quantities as possible
- 4. Extract QGP properties
 - tune models & repeat comparisons

QGP signatures

modification of lowmass resonances

"direct" info from the medium

"non-direct" info from the medium

...larger than critical value

1975-2009: 34 years of heavy-ion collisions

Résumé (très succint) des résultats SPS & RHIC

le système produit par collisions d'ions lourds :

- 1. a une densité d'énergie > à ε_c
- 2. a une température au freeze-out ~ à T_c
- 3. surproduit de l'étrangeté
- 4. modifie les résonances légères
- 5. dissout les résonances lourdes
- 6. rayonne des photons
- 7. a des degrés de liberté partoniques

comportement attendu d'un plasma de quarks et de gluons

۳ ۱.0 ×

0.08

0.06

0.04

0.02

assumption: QGP has been established @ RHIC prior to LHC

SEARCH for the QGP may be essentially over DISCOVERY of the QGP is well under way MEASURING QGP parameters has hardly begun

QGP @ LHC versus RHIC = Z/W @ LEP versus SppS

the LHC is the ideal place for studying the QGP (next slides)

adapted from J. Schukraft @ Split06

Heavy ion collisions & QGP @ LHC

		machine	SPS	RHIC	LHC	
the biggest step in energy in the history of heavy-ion collisions		√s (GeV)	17	200	5500	= 0.18 mJ
		N _{ch}	1000	4000	50 000	
		τ ⁰ _{QGP} (fm/c)	1	0.2	0.1	\Rightarrow faster
ςΓ		T/T _c (τ ⁰ _{QGP})	1.1	1.9	3.0-4.2	\Rightarrow hotter
(Me	l HC	ε[1 fm/c] (GeV/fm³)	3	5	15-60	\Rightarrow denser
-	quark-	τ _{QGP} (fm/c)	≤ 2	2-4	≥ 10	
F		τ _f (fm/c)	~ 10	20-30	30-40	⇒ ioligei
250 -		V _f (fm³)	~ 10 ³	~ 104	~ 10 ⁵	\Rightarrow bigger
200	₩ RHIC _{SDC}	μ _Β (MeV)	250	20	1	\Rightarrow cleaner
critical point		processes soft \rightarrow semi-hard \rightarrow hard		→ hard	\Rightarrow harder	
150 - 100 -	AGS	- _ ε, νο	Ι. & τ QGP :	× 10(4) from	SPS(RHIC) to LHC
hadron gas chemical freeze-out "…the LHC will become					ideal facility	for a

systematic exploration and quantitative confirmation of the insights obtained at RHIC, aided by the plentiful abundance of hard probes."

B. Müller, hep-ph/0410115

J. Schukraft, Nucl. Phys. A 698 (2002) 287

0.4

0.2

atomic

0.6

nuclei

0.8

1

neutron stars

1.4

μ_в (GeV)

1.2

Hard processes: what is different @ LHC

Jets: what is different @ LHC

Heavy flavors: what is different @ LHC

Heavy ions @ LHC

ATLAS: heavy-ion LOI (2004)

ALICE: the dedicated heavy-ion experiment

11

CMS: strong

The ALICE collaboration

ALICE (A Large Ion Colider Experiment)

→ time

hard scattering

hard photons

⇒ pQCD

heavy flavors
⇒ pQCD

• jets

⇒ pQCD

pt 🗲

deconfinement

thermal photons

⇒ QGP temperature

heavy flavors

⇒ QGP properties

jet quenching

⇒ QGP density

hadronization

• EbyE fluctuations

⇒ critical behavior

• I.m. dilepton, DCC

⇒ chiral symmetry

exotica

⇒ QGP condens.

freeze-out

 particle yields, spectra, flow & HBT

⇒ thermal & chemical conditions

⇒ dynamical evol.

⇒ indirect info from the early stage

ALICE is designed to explore a broad p_t range and to correlate most of the signals

large acceptance & granularity, selective triggers, good tracking capabilities, wide momentum coverage, good secondary vertex reconstruction, hadron, lepton & photon id.

soft sector: observables & expected performances comparable to that of RHIC hard sector: new observables, new analyses

Particle tracking in ALICE central barrel

robust & redundant tracking from 100 MeV/c to 100 GeV/c

- modest solenoidal field (0.5 T) \rightarrow easy pattern recognition
- long level arm \rightarrow good momentum resolution
- small material budget (~10% X₀)
- full GEANT simulation, central PbPb with $dN_{ch}/dy = 6000$
 - very little dependence on dN_{ch}/dy up to 8000

• simulation + reconstruction ~ 4±1 hours

TOF

Particle identification with ALICE (from 100 MeV/c to > 50 GeV/c)

More: γ -jet correlations

direct calibration of jet quenching

combination of PHOS, EMCAL, particle tracking & Id. allows to get jet trigger, energy loss, particle composition, transverse structure & fragmentation function down to low p_t

Détecteurs à petit angle

ALICE in numbers

- ALICE uses (almost) all known particle detection techniques
- largest TPC, TRD & warm dipole ever built
- up to 6000 particles per central PbPb event in the central part
- data taking rate (PbPb): 1.2 GB/s (~ 1 PB/month)
- software: 900 kLoC
- data analysis & storage is world distributed

Evolution d'ALICE

La TPC (la pièce centrale d'ALICE)

Philippe.Crochet@clermont.in2p3.fr

Installation de la TPC (jan. 2007)

~ 100 m horizontal, ~ 100 m vertical en 2 jours : <v> = 4 m/heure

Philippe.Crochet@clermont.in2p3.fr

Séminaire, LAL, 09/06/09

L'ITS (Internal Tracker System)

type	surface	# canaux
SPD (pixel)	0.2 m ²	9.8 M
SDD (drift)	1.3 m ²	1.33 k
SSD (strip)	4.9 m ²	2.6 M

doit pouvoir identifier de l'ordre de 90 particules/cm² par collision toutes les 100 ns

Installation et cablage de l'ITS

Philippe.Crochet@clermont.in2p3.fr

Un exemple de réalisation mécanique complexe

L'absorbeur frontal du spectromètre à muons

100 tonnes, 18 m, W, Pb, Fe, graphite, béton...

béton : France, engineering & supervision : CERN, design : Russie

Acier : Finlande

Aluminium : Arménie

Acier : Inde

Le dipôle du spectromètre à muons (I)

Philippe.Crochet@clermont.in2p3.fr

Séminaire, LAL, 09/06/09

36

Le dipôle du spectromètre à muons (II)

2005:

assemblage final

2003 : transport culasse Dubna-CERN retardé de 10 mois

Philippe.Crochet@clermont.in2p3.fr

Séminaire, LAL, 09/06/09

37

Le spectromètre à muons installé (printemps 2008)

Etat d'installation d'ALICE en septembre 2008

ITS, TPC, MUON, TOF, HMPID, T0, V0, FMD, PMD, ZDC, ACCORDE, 1/5 PHOS, 4/18 TRD, 0/6 EMCal

Janvier 08 – Août 08 : cosmiques

10 sept 08 : premiers faisceaux et premières collisions

gaz dans l'ITS

Les faisceaux dans les V0

Philippe.Crochet@clermont.in2p3.fr

1 LHC year = 7 months pp (10⁷s, 3·10³⁰cm⁻²s⁻¹) + 1 month AA(-like) (10⁶s, 5·10²⁶cm⁻²s⁻¹)

• 5 first years:

- regular pp runs at 14 TeV: commissioning, reference, dedicated pp physics
- first PbPb run at low luminosity: global observables, large x-sections
- 2 PbPb runs at high luminosity (L^{int} = 0.5nb⁻¹/year): small x-sections
- 1 pA run: cold nuclear matter effects (shadowing, absorption...)
- 1 light ion run: energy density dependence
- later (different options depending on the first results):
 - pp (or pp-like) at 5.5 TeV
 - other light or intermediate-mass systems
 - other systems p-likeA
 - PbPb at low energy
 - PbPb at 5.5 TeV & high luminosity

Contribution française à ALICE

Waiting for data...

PbPb @ 5.5 TeV