Jet structures in Higgs and New Physics searches

Gavin P. Salam

LPTHE, UPMC Paris 6 & CNRS

Séminaire du LAL Orsay, 8 September 2009

Part based on work with Jon Butterworth, Adam Davison (UCL) & Mathieu Rubin (LPTHE)

This seminar is about two things:

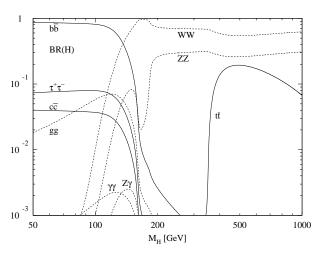
► A new Higgs search channel at LHC

Work with Butterworth, Davison & Rubin

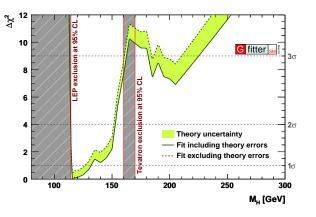
► Which overlaps with the question of how to get the best out of jets at LHC

A broader body of work

centred on the FastJet program with Cacciari & Soyez and work also with: Dasgupta, Ellis, Magnea, Raklev, Rojo

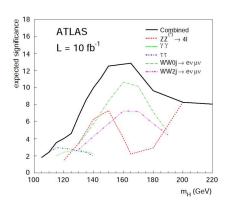

The Higgs search will provide the backbone of the talk.

Higgs production at LHC


Dominant Higgs production channels are

- ▶ gluon fusion via top loop
- WW fusion with two forward jets
- ► H radiated off top-quark, or W or Z boson "associated production"

Dominant Higgs decay mode depends on mass.


- ▶ Low mass: $H \rightarrow b\bar{b}$
- ► High mass: $H \rightarrow WW/ZZ$

Mass constraints come from

- ▶ LEP exclusion
- ► Tevatron exclusion
- EW precision fits

Strong preference for low-mass Higgs, one that decays mainly to $b ar{b}$

Low-mass Higgs search (115 \lesssim m_h \lesssim 130 GeV) complex because dominant decay channel, $H \rightarrow bb$, often swamped by backgrounds.

Various production & decay processes

▶ $gg \rightarrow H \rightarrow \gamma \gamma$

feasible

ightharpoonup WW o H o au au

feasible

▶ $gg \rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$

feasible

▶ $gg \rightarrow t\bar{t}H, H \rightarrow b\bar{b}$

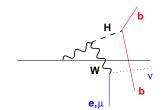
v. hard

 $ightharpoonup q\bar{q}
ightarrow WH, ZH, H
ightharpoonup b\bar{b}$

v. hard

Jets, G. Salam, LPTHE (p. 7) VH, $H \rightarrow b\bar{b}$

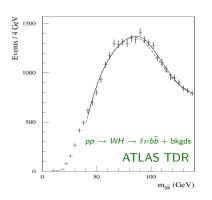
What does a "very hard" search channel look like?


WH/ZH search channel @ LHC

▶ Signal is $W \to \ell \nu$, $H \to b\bar{b}$.

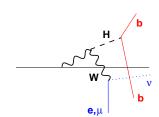
- Studied e.g. in ATLAS TDR
- ▶ Backgrounds include $Wb\bar{b}$, $t\bar{t} \rightarrow \ell\nu b\bar{b}ii$, . . .

Difficulties, e.g.

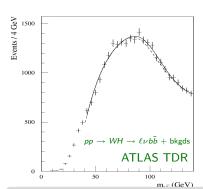

- ► Poor acceptance (~ 12%)
 Easily lose 1 of 4 decay p
- p_t cuts introduce intrinsic bkgd mass scale;
- $ightharpoonup gg
 ightarrow tar{t}
 ightarrow \ell
 u bar{b}[jj]$ has similar scale
- ► small S/B
- ► Need exquisite control of bkgd shape

WH/ZH search channel @ LHC

Studied e.g. in ATLAS TDR


- ▶ Signal is $W \rightarrow \ell \nu$, $H \rightarrow b\bar{b}$.
 - Backgrounds include $Wb\bar{b},\ t\bar{t} \to \ell\nu b\bar{b}jj,\ \dots$

Difficulties, e.g.


- ► Poor acceptance (~ 12%)

 Easily lose 1 of 4 decay products
- $ightharpoonup p_t$ cuts introduce intrinsic bkgd mass scale;
- ▶ $gg \rightarrow t\bar{t} \rightarrow \ell \nu b\bar{b}[jj]$ has similar scale
- ▶ small S/B
- Need exquisite control of bkgd shape

WH/ZH search channel @ LHC

▶ Signal is $W \to \ell \nu$, $H \to b\bar{b}$. ▶ Backgrounds include $Wb\bar{b}$, $t\bar{t} \to \ell \nu b\bar{b}jj$, . . . Studied e.g. in ATLAS TDR



Difficulties, e.g.

- Poor acceptance ($\sim 12\%$)
 Easily lose 1 of 4 decay products
- ▶ p_t cuts introduce intrinsic bkgd mass scale; ▶ $gg \rightarrow t\bar{t} \rightarrow \ell \nu b\bar{b}[jj]$ has similar scale
- ▶ small S/B
- ▶ Need exquisite control of bkgd shape

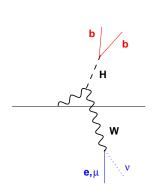
Conclusion (ATLAS TDR):

"The extraction of a signal from $H \to b\bar b$ decays in the WH channel will be very difficult at the LHC, even under the most optimistic assumptions [...]"

Jets, G. Salam, LPTHE (p. 9)
$$LVH$$
, $H \rightarrow b\bar{b}$

LHC will (should...) span two orders of magnitude in p_t :

$$\frac{m_{EW}}{2} \longleftrightarrow 50 m_{EW}$$


That's why it's being built

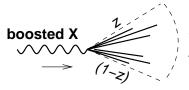
In much of that range, EW-scale particles are **light** [a little like *b*-quarks at the Tevatron]

Can large phase-space be used to our advantage?

[At Tevatron you don't look for B-hadrons at zero p_t ...]

Take advantage of the fact that $\sqrt{s} \gg M_H, m_t, \dots$

Go to high p_t :


- ✓ Higgs and W/Z more likely to be central
- ✓ high- p_t $Z \rightarrow \nu \bar{\nu}$ becomes visible
- ✓ Fairly collimated decays: high- p_t ℓ^\pm, ν, b Good detector acceptance
- ✓ Backgrounds lose cut-induced scale
- \checkmark $t\bar{t}$ kinematics cannot simulate bkgd

 Gain clarity and S/B
- X Cross section will drop dramatically

 By a factor of 20 for $p_{tH} > 200 \text{ GeV}$ Will the benefits outweigh this?

And how do we ID high- p_t hadronic Higgs decays?

Hadronically decaying EW boson at high $p_t \neq two$ jets

single jet
$$R \gtrsim \frac{m}{p_t} \frac{1}{\sqrt{z(1-z)}}$$

Rules of thumb:

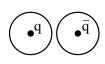
$$m=100~{
m GeV},~p_t=500~{
m GeV}$$

$$ightharpoonup R < \frac{2m}{p_t}$$
: always resolve **two** jets

$$ightharpoonup R \gtrsim \frac{3m}{p_t}$$
: resolve one jet in 75% of cases $(\frac{1}{8} < z < \frac{7}{8})$

$$R \gtrsim 0.6$$

How do we find a boosted Higgs inside a single jet?


Special case of general (unanswered) question: how do we best do jet-finding?

Various people have looked at boosted objects over the years

- ▶ Seymour '93 [heavy Higgs $\rightarrow WW \rightarrow \nu \ell \text{jets}$]
- ▶ Butterworth, Cox & Forshaw '02 [$WW \rightarrow WW \rightarrow \nu \ell {
 m jets}$]
- ▶ Agashe et al. '06 [KK excitation of gluon $\rightarrow t\bar{t}$]
- ▶ Butterworth, Ellis & Raklev '07 [SUSY decay chains $\rightarrow W, H$] **ETC.**
- Skiba & Tucker-Smith '07 [vector quarks]
- ▶ Lillie, Randall & Wang '07 [KK excitation of gluon $\rightarrow t\bar{t}$]
- **•** •

Boosted ID strategies

Select on the jet mass with one large (cone) jet Can be subject to large bkgds [high- p_t jets have significant masses]

Choose a small jet size (R) so as to resolve two jets

Easier to reject background if you actually see substructure

[NB: must manually put in "right" radius]

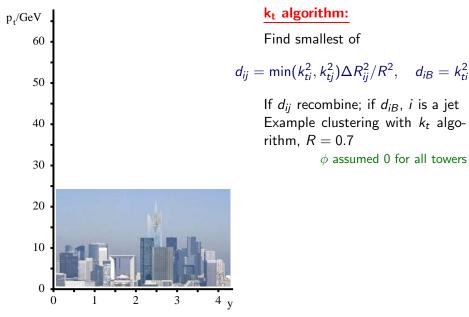
Take a large jet and split it in two

Let jet algorithm establish correct division

Jets, G. Salam, LPTHE (p. 14)

LBoosted object finding

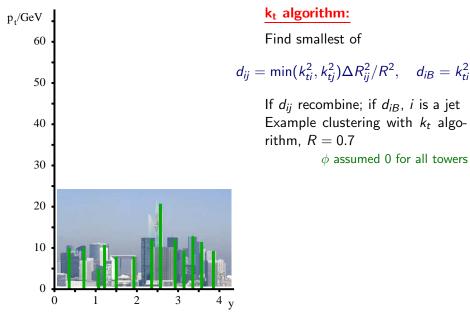
To understand what it means to split a jet, let's take a detour, and look at how jets are built up


k_t algorithm:

Find smallest of

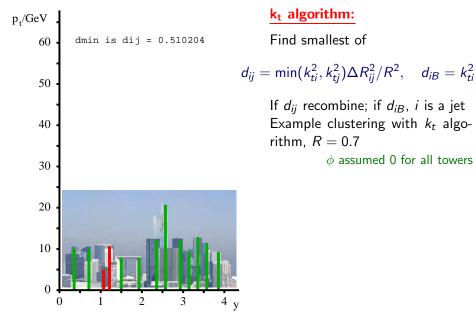
$$\textit{d}_{ij} = \min(\textit{k}_{ti}^2, \textit{k}_{tj}^2) \Delta \textit{R}_{ij}^2 / \textit{R}^2, \quad \textit{d}_{iB} = \textit{k}_{ti}^2$$

If d_{ij} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm, R=0.7 ϕ assumed 0 for all towers



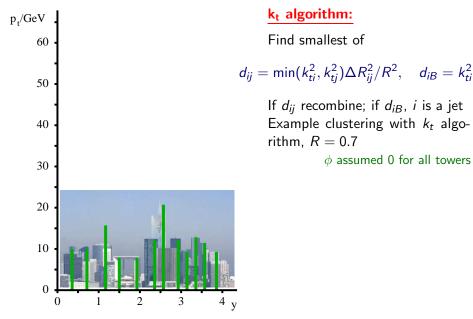
k_t algorithm:

Find smallest of


If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm. R = 0.7 ϕ assumed 0 for all towers

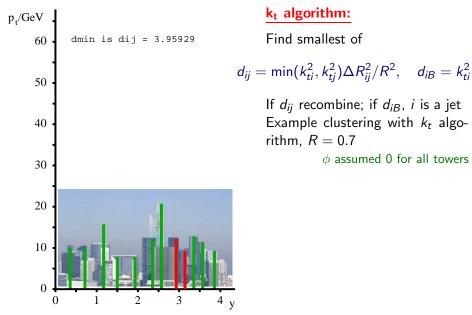
k_t algorithm:

Find smallest of


If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm. R = 0.7 ϕ assumed 0 for all towers

k_t algorithm:

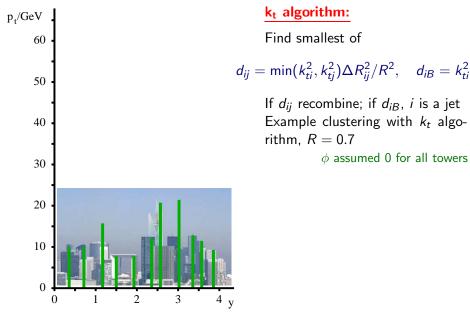
Find smallest of


If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm, R = 0.7

k_t algorithm:

Find smallest of

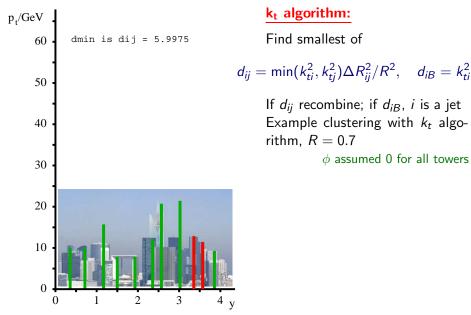
If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm. R = 0.7 ϕ assumed 0 for all towers



k_t algorithm:

Find smallest of

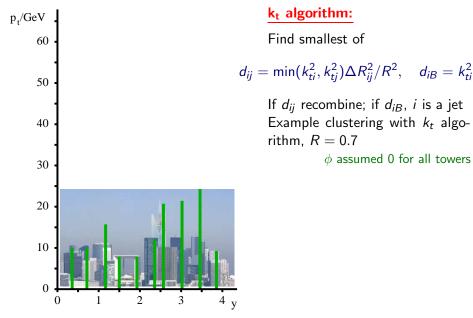
rithm, R = 0.7


If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-

k_t algorithm:

Find smallest of

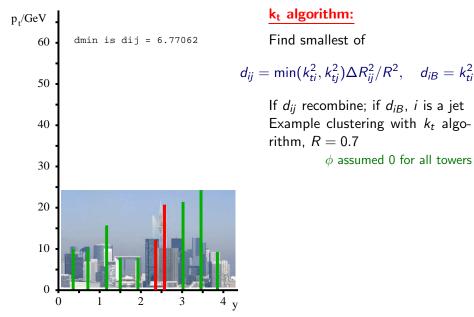
If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm. R = 0.7 ϕ assumed 0 for all towers



k_t algorithm:

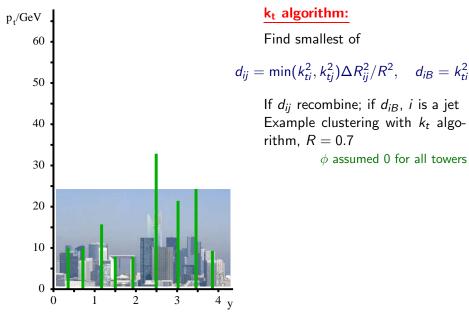
Find smallest of

rithm, R = 0.7


If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-

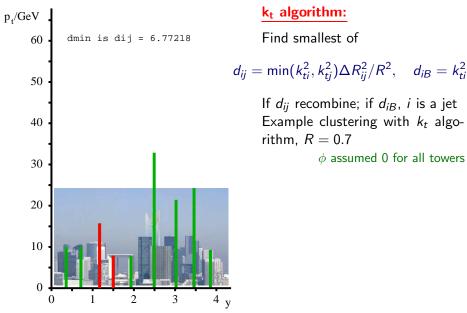
k_t algorithm:

Find smallest of


If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm. R = 0.7

k_t algorithm:

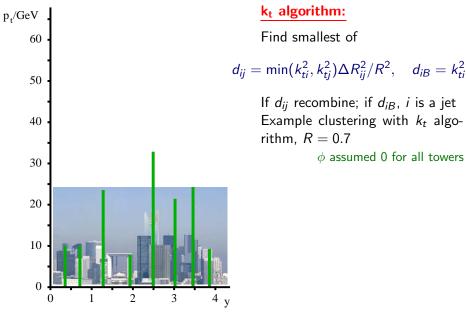
Find smallest of


If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm, R = 0.7

k_t algorithm:

Find smallest of

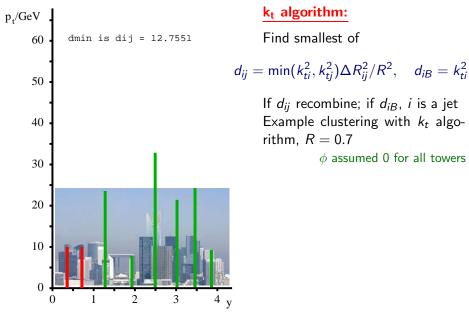
If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm. R = 0.7 ϕ assumed 0 for all towers



k_t algorithm:

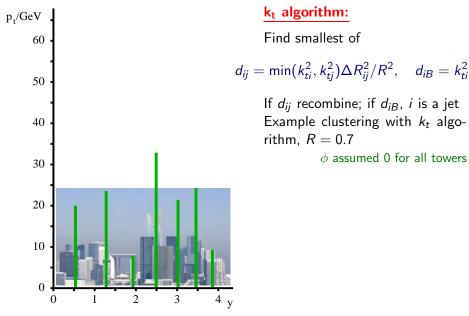
Find smallest of

rithm, R = 0.7


If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-

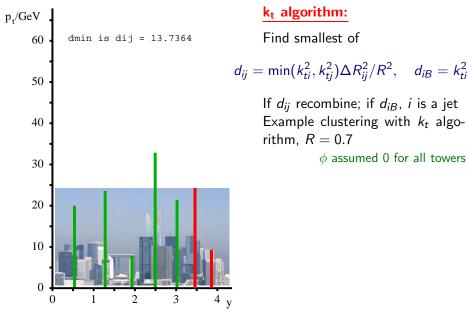
k_t algorithm:

Find smallest of


If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm. R = 0.7

k_t algorithm:

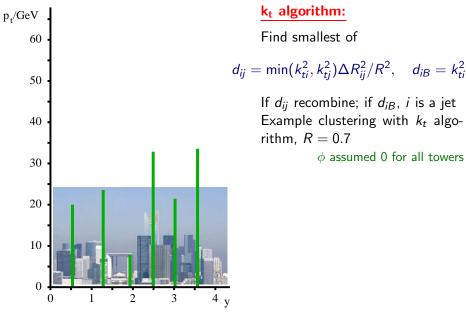
Find smallest of


If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm, R = 0.7

k_t algorithm:

Find smallest of

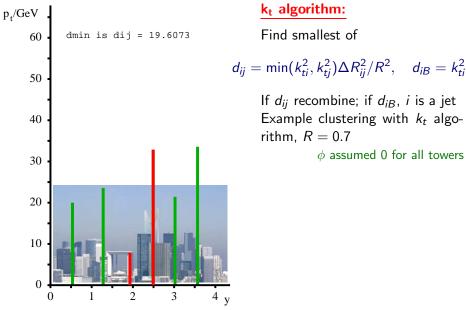
If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm. R = 0.7



k_t algorithm:

Find smallest of

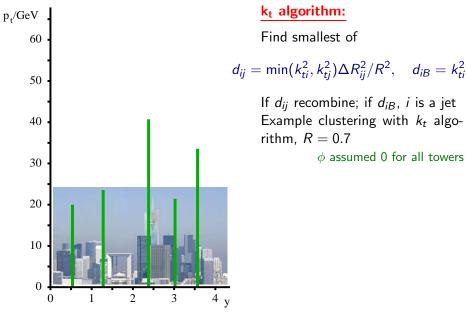
If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-


rithm, R = 0.7 ϕ assumed 0 for all towers

k_t algorithm:

Find smallest of

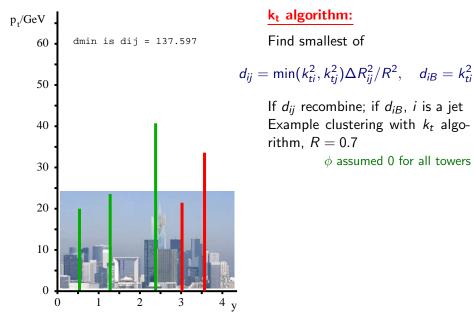
If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm, R = 0.7



k_t algorithm:

Find smallest of

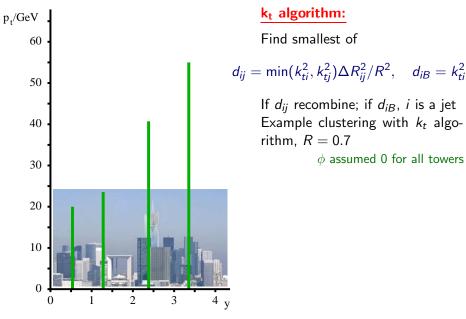
rithm, R = 0.7


If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-

k_t algorithm:

Find smallest of

If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm, R = 0.7

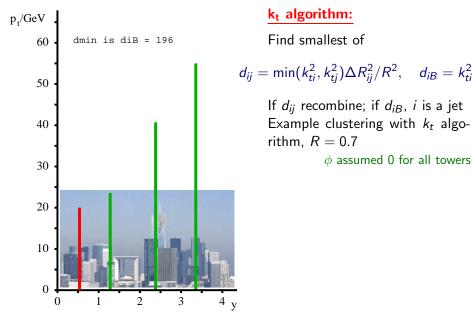


k_t algorithm:

Find smallest of

If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-

rithm, R = 0.7

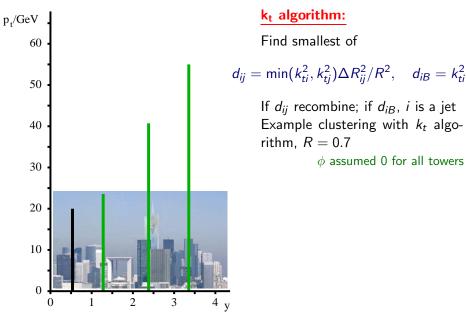


k_t algorithm:

Find smallest of

rithm, R = 0.7

If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-

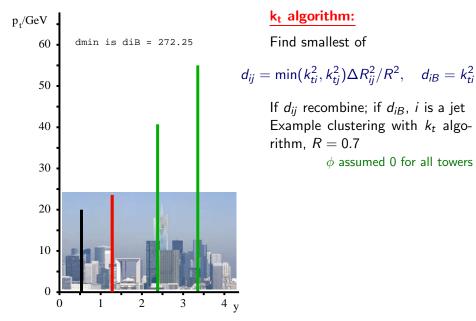


k_t algorithm:

Find smallest of

rithm. R = 0.7

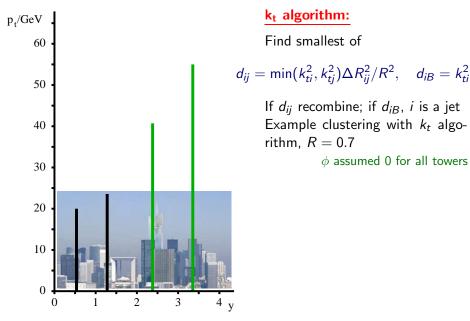
If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-



k_t algorithm:

Find smallest of

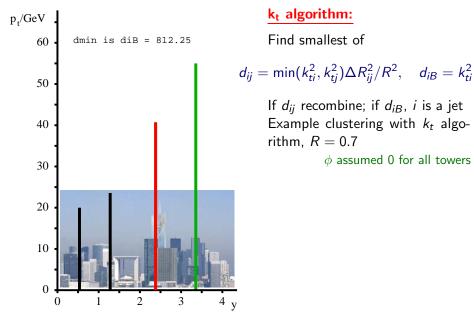
If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-


rithm, R = 0.7 ϕ assumed 0 for all towers

k_t algorithm:

Find smallest of

If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm. R = 0.7

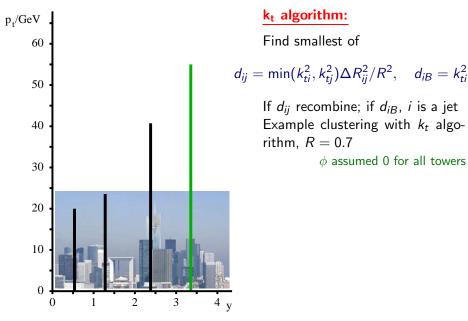


k_t algorithm:

Find smallest of

If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-

rithm, R = 0.7

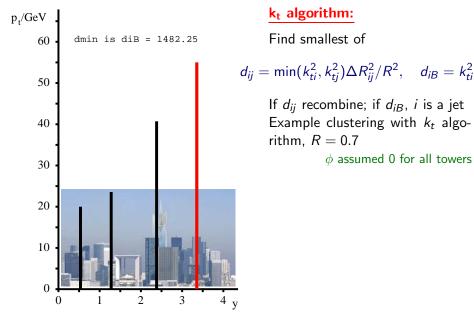


k_t algorithm:

Find smallest of

rithm. R = 0.7

If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-

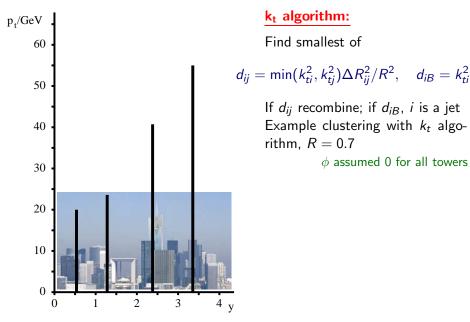


k_t algorithm:

Find smallest of

rithm, R = 0.7

If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-



k_t algorithm:

Find smallest of

rithm. R = 0.7

If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-

k_t algorithm:

Find smallest of

rithm, R = 0.7

If d_{ii} recombine; if d_{iB} , i is a jet Example clustering with k_t algo-

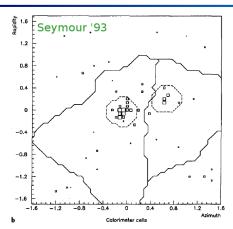
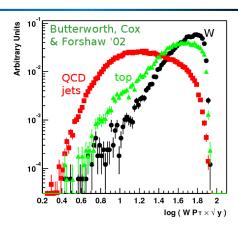



Fig. 2. A hadronic W decay, as seen at calorimeter level, a without, and b with, particles from the underlying event. Box sizes are logarithmic in the cell energy, lines show the borders of the sub-jets for infinitely soft emission according to the cluster (solid) and cone (dashed) algorithms

Use k_t jet-algorithm's hierarchy to split the jets

Use k_t alg.'s distance measure (rel. trans. mom.) to cut out QCD bkgd:

$$d_{ij}^{k_t} = \min(p_{ti}^2, p_{tj}^2) \Delta R_{ij}^2$$

Y-splitter

only partially

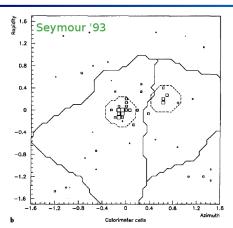
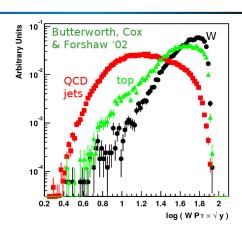



Fig. 2. A hadronic W decay, as seen at calorimeter level, a without, and b with, particles from the underlying event. Box sizes are logarithmic in the cell energy, lines show the borders of the sub-jets for infinitely soft emission according to the cluster (solid) and cone (dashed) algorithms

Use k_t jet-algorithm's hierarchy to split the jets

Use k_t alg.'s distance measure (rel. trans. mom.) to cut out QCD bkgd:

$$d_{ij}^{k_t} = \min(p_{ti}^2, p_{tj}^2) \Delta R_{ij}^2$$

Y-splitter

only partially correlated with mass

#1: Our tool

[in FastJet]

The Cambridge/Aachen jet alg.

Dokshitzer et al '97 Wengler & Wobisch '98

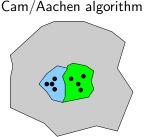
Work out $\Delta R_{ii}^2 = \Delta y_{ii}^2 + \Delta \phi_{ii}^2$ between all pairs of objects i, j; Recombine the closest pair;

Repeat until all objects separated by $\Delta R_{ii} > R$.

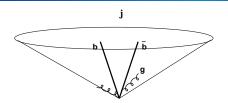
Gives "hierarchical" view of the event; work through it backwards to analyse jet

The Cambridge/Aachen jet alg.

Dokshitzer et al '97 Wengler & Wobisch '98


Work out $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2$ between all pairs of objects i, j;

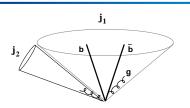
Recombine the closest pair;


Repeat until all objects separated by $\Delta R_{ij} > R$. [in FastJet]

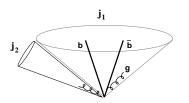
Gives "hierarchical" view of the event; work through it backwards to analyse jet

k_t algorithm

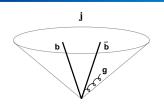
Allows you to "dial" the correct *R* to keep perturbative radiation, but throw out UE

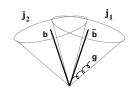

1. Undo last stage of clustering (\equiv reduce R): $J \rightarrow J_1, J_2$

2. If $\max(m_1,m_2)\lesssim 0.67m$, call this a mass drop [else goto 1] Automatically detects correct $R\sim R_{bb}$ to catch angular-ordered radii.

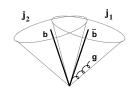

Require $y_{12}=\frac{m^2(C_1^2, G_2^2)}{m_2}\Delta_1 R_{12}^2=\frac{m^2(C_2^2, G_2^2)}{m_2}=0.09$ [else goto 1].

Require each subjet to have b-tag

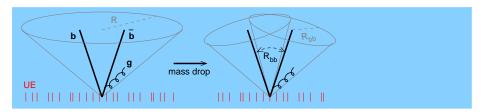

[else reject event]


- 1. Undo last stage of clustering (\equiv reduce R): $J \rightarrow J_1, J_2$
- 2. If $\max(m_1, m_2) \lesssim 0.67m$, call this a **mass drop** [else goto 1] Automatically detects correct $R \sim R_{bb}$ to catch angular-ordered radn.
- 3. Require $y_{12}=rac{\min(p_{11}^c,p_{22}^c)}{m_{12}^2}\Delta R_{12}^2\simeq rac{\min(z_1,z_2)}{\max(z_1,z_2)}>0.09$ [else goto 1] dimensionless rejection of asymmetric QCD branching
- Require each subjet to have *b*-tag [else reject event]

- 1. Undo last stage of clustering (\equiv reduce R): $J \rightarrow J_1, J_2$
- 2. If $\max(m_1, m_2) \lesssim 0.67 m$, call this a **mass drop** [else goto 1] Automatically detects correct $R \sim R_{bb}$ to catch angular-ordered radn.
- 3. Require $y_{12}=\frac{\min(p_{r1}^2,p_{r2}^2)}{m_{12}^2}\Delta R_{12}^2\simeq \frac{\min(z_1,z_2)}{\max(z_1,z_2)}>0.09$ [else goto 1] dimensionless rejection of asymmetric QCD branching
 - I. Require each subjet to have *b*-tag [else reject event]

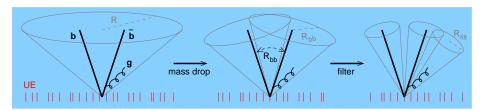

- 1. Undo last stage of clustering (\equiv reduce R): $J \rightarrow J_1, J_2$
- 2. If $\max(m_1, m_2) \lesssim 0.67m$, call this a **mass drop** [else goto 1] Automatically detects correct $R \sim R_{bb}$ to catch angular-ordered radn.
- 3. Require $y_{12}=rac{\min(ilde{p}_{11}^{*}, ilde{p}_{12}^{*})}{m_{12}^{2}}\Delta R_{12}^{2}\simeq rac{\min(z_{1},z_{2})}{\max(z_{1},z_{2})}>0.09$ [else goto 1 dimensionless rejection of asymmetric QCD branching
- 4. Require each subjet to have *b*-tag [else reject event

- 1. Undo last stage of clustering (\equiv reduce R): $J \rightarrow J_1, J_2$
- 2. If $\max(m_1, m_2) \lesssim 0.67m$, call this a **mass drop** [else goto 1] Automatically detects correct $R \sim R_{bb}$ to catch angular-ordered radn.
- 3. Require $y_{12} = \frac{\min(p_{t1}^2, p_{t2}^2)}{m_{12}^2} \Delta R_{12}^2 \simeq \frac{\min(z_1, z_2)}{\max(z_1, z_2)} > 0.09$ [else goto 1] dimensionless rejection of asymmetric QCD branching
- 4. Require each subjet to have *b*-tag [else reject event



- 1. Undo last stage of clustering (\equiv reduce R): $J \rightarrow J_1, J_2$
- 2. If $\max(m_1, m_2) \lesssim 0.67m$, call this a mass drop [else goto 1] Automatically detects correct $R \sim R_{bb}$ to catch angular-ordered radn.
- 3. Require $y_{12} = \frac{\min(p_{t1}^2, p_{t2}^2)}{m_{12}^2} \Delta R_{12}^2 \simeq \frac{\min(z_1, z_2)}{\max(z_1, z_2)} > 0.09$ [else goto 1]
- 4. Require each subjet to have *b*-tag [else reject event

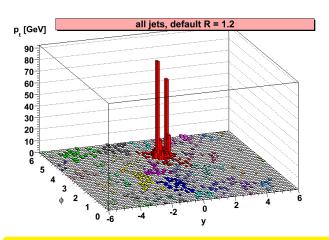
- 1. Undo last stage of clustering (\equiv reduce R): $J \rightarrow J_1, J_2$
- 2. If $\max(m_1, m_2) \lesssim 0.67m$, call this a **mass drop** [else goto 1] Automatically detects correct $R \sim R_{bb}$ to catch angular-ordered radn.
- 3. Require $y_{12} = \frac{\min(p_{t1}^2, p_{t2}^2)}{m_{12}^2} \Delta R_{12}^2 \simeq \frac{\min(z_1, z_2)}{\max(z_1, z_2)} > 0.09$ [else goto 1] dimensionless rejection of asymmetric QCD branching
- 4. Require each subjet to have *b*-tag [else reject event]


 Correlate flavour & momentum structure

At moderate p_t , R_{bb} is quite large; $UE \& pileup degrade mass resolution <math>\delta M \sim R^4 \Lambda_{UE} \frac{p_t}{M}$ [Dasgupta, Magnea & GPS '07]

Filter the jet

- ▶ Reconsider region of interest at smaller $R_{filt} = \min(0.3, R_{b\bar{b}}/2)$
- ▶ Take 3 hardest subjets b, \bar{b} and leading order gluon radiation

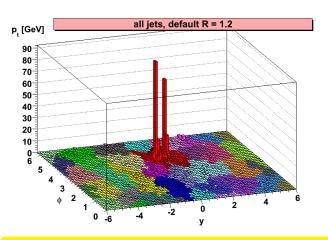

At moderate p_t , R_{bb} is quite large; $UE \& pileup degrade mass resolution <math>\delta M \sim R^4 \Lambda_{UE} \frac{p_t}{M}$ [Dasgupta, Magnea & GPS '07]

Filter the jet

- ▶ Reconsider region of interest at smaller $R_{filt} = \min(0.3, R_{b\bar{b}}/2)$
- ▶ Take ${f 3}$ hardest subjets $b, \ {ar b}$ and leading order gluon radiation

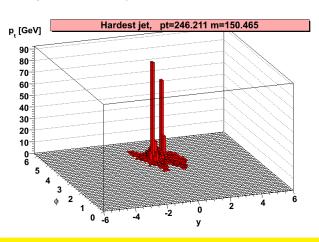
SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

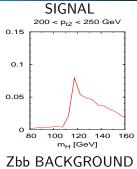


Zbb BACKGROUND

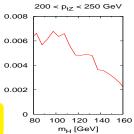
Cluster event, C/A, R=1.2

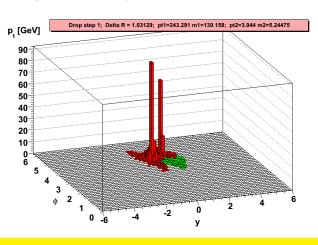

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

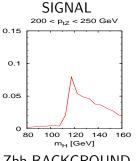


Zbb BACKGROUND

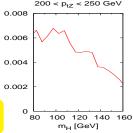

Fill it in, → show jets more clearly

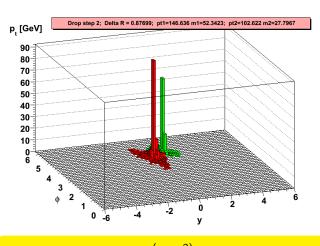


Consider hardest jet, m = 150 GeV

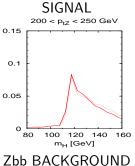


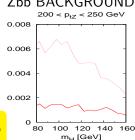
200 < p_{t7} < 250 GeV

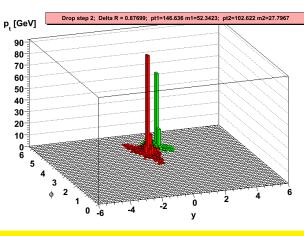


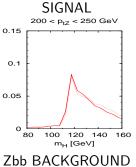


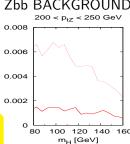
split: m=150 GeV, $\frac{\max(m_1,m_2)}{m}=0.92 \rightarrow \text{repeat}$

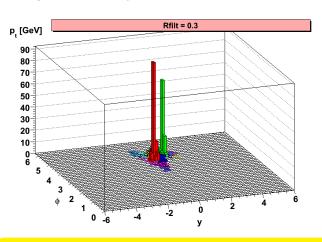


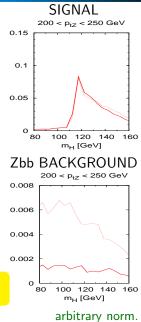

Zbb BACKGROUND 200 < ptz < 250 GeV

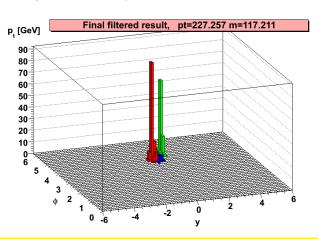


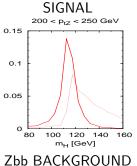

split: $m=139~{\rm GeV},~\frac{{\rm max}(m_1,m_2)}{m}=0.37
ightarrow {\rm mass~drop}$

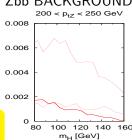




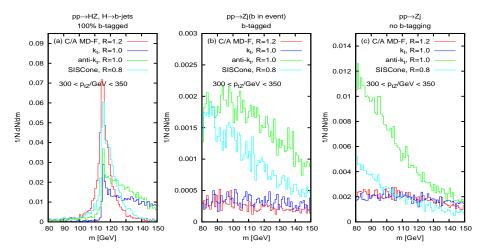

check: $y_{12} \simeq \frac{p_{t2}}{p_{t1}} \simeq 0.7 \rightarrow \text{OK} + 2 \text{ } b\text{-tags (anti-QCD)}$







 $R_{filt} = 0.3$: take 3 hardest, m = 117 GeV



arbitrary norm.

Compare with "standard" algorithms

Check mass spectra in HZ channel, $H o b ar{b}$, $Z o \ell^+ \ell^-$

Cambridge/Aachen (C/A) with mass-drop and filtering (MD/F) works best

Consider HW and HZ signals: $H \to b\bar{b}$, $W \to \ell\nu$, $Z \to \ell^+\ell^-$ and $Z \to \nu\bar{\nu}$,

Common cuts

- ▶ $p_{tV}, p_{tH} > 200 \text{ GeV}$
- ightharpoonup $|\eta_{Higgs-jet}| < 2.5$
- $\ell = e, \mu, \ p_{t,\ell} > 30 \text{ GeV}, \ |\eta_{\ell}| < 2.5$
- No extra ℓ , b's with $|\eta| < 2.5$

Assumptions

- ► Real/fake *b*-tag rates: 0.6/0.02
- ► S/\sqrt{B} from 16 GeV window

3 channels: $\ell^{\pm} + \not\!\!E_T$; $\ell^+\ell^-$; $\not\!\!E_T$

See next slides

should be fairly safe

ATLAS jet-mass resln \sim half this?

<u>Tools:</u> Herwig 6.510, Jimmy 4.31 (tuned), *hadron-level* → FastJet 2.3 Backgrounds: VV, Vj, jj, $t\bar{t}$, single-top, with > 30 fb⁻¹ (except jj)

Consider HW and HZ signals: $H \to b\bar{b}$, $W \to \ell\nu$, $Z \to \ell^+\ell^-$ and $Z \to \nu\bar{\nu}$,

Common cuts

- ▶ $p_{tV}, p_{tH} > 200 \text{ GeV}$
- ▶ $|\eta_{Higgs-jet}| < 2.5$
- $\ell = e, \mu, \; p_{t,\ell} > 30 \; \text{GeV}, \; |\eta_{\ell}| < 2.5$
- ▶ No extra ℓ , b's with $|\eta| < 2.5$

Assumptions

- ▶ Real/fake *b*-tag rates: 0.6/0.02
- \triangleright S/\sqrt{B} from 16 GeV window

3 channels: $\ell^{\pm} + \not\!\!\!E_T$; $\ell^+\ell^-$; $\not\!\!\!E_T$ Channel-specific cuts:

See next slides

ATI AS jet-mass resin ~ half this?

<u>Tools:</u> Herwig 6.510, Jimmy 4.31 (tuned), *hadron-level* \rightarrow FastJet 2.3 Backgrounds: VV. Vi. ii. $t\bar{t}$. single-top, with > 30 fb⁻¹ (except ii)

Consider HW and HZ signals: $H \to b\bar{b}$, $W \to \ell\nu$, $Z \to \ell^+\ell^-$ and $Z \to \nu\bar{\nu}$,

Common cuts

- $ightharpoonup p_{tV}, p_{tH} > 200 \text{ GeV}$
- ▶ $|\eta_{Higgs-jet}| < 2.5$
- $\ell = e, \mu, \; p_{t,\ell} > 30 \; \text{GeV}, \; |\eta_{\ell}| < 2.5$
- ▶ No extra ℓ , b's with $|\eta| < 2.5$

Assumptions

- ► Real/fake *b*-tag rates: 0.6/0.02
- ► S/\sqrt{B} from 16 GeV window

3 channels: $\ell^{\pm} + \not\!\!\!E_T$; $\ell^+\ell^-$; $\not\!\!\!E_T$ Channel-specific cuts:

See next slides

should be fairly safe

ATLAS jet-mass resln \sim half this?

<u>Tools:</u> Herwig 6.510, Jimmy 4.31 (tuned), *hadron-level* → FastJet 2.3 <u>Backgrounds:</u> VV, Vj, jj, $t\bar{t}$, single-top, with > 30 fb⁻¹ (except jj)

Consider HW and HZ signals: $H \to b\bar{b}$, $W \to \ell\nu$, $Z \to \ell^+\ell^-$ and $Z \to \nu\bar{\nu}$,

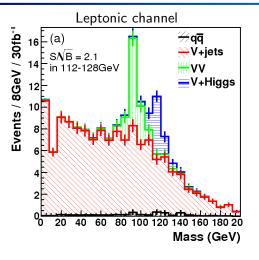
Common cuts

- $ightharpoonup p_{tV}, p_{tH} > 200 \text{ GeV}$
- $ightharpoonup |\eta_{Higgs-iet}| < 2.5$
- $\ell = e, \mu, p_{t,\ell} > 30 \text{ GeV}, |\eta_{\ell}| < 2.5$
- ▶ No extra ℓ , b's with $|\eta| < 2.5$

Assumptions

- ► Real/fake *b*-tag rates: 0.6/0.02
- ► S/\sqrt{B} from 16 GeV window

3 channels: $\ell^{\pm} + \cancel{E}_{T}$; $\ell^{+}\ell^{-}$; \cancel{E}_{T} Channel-specific cuts:


See next slides

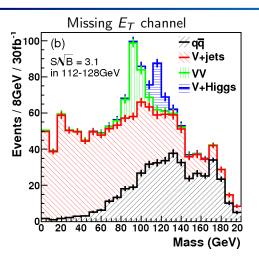
should be fairly safe

ATLAS jet-mass resln \sim half this?

Tools: Herwig 6.510, Jimmy 4.31 (tuned), hadron-level \rightarrow FastJet 2.3 Backgrounds: VV, Vi, ii, $t\bar{t}$, single-top, with $> 30 \text{ fb}^{-1}$ (except ii)

combine HZ and HW, $p_t > 200 \text{ GeV}$

Common cuts


- $ho_{tV}, p_{tH} > 200 \text{ GeV}$
- ▶ $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30 \text{ GeV}, |\eta_{\ell}| < 2.5]$
- ▶ No extra ℓ , b's with $|\eta| < 2.5$
- ► Real/fake *b*-tag rates: 0.6/0.02
- ► S/\sqrt{B} from 16 GeV window

Leptonic channel

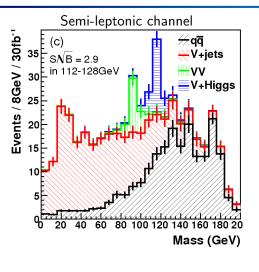
$$Z \rightarrow \mu^+\mu^-, e^+e^-$$

▶ $80 < m_{\ell^+\ell^-} < 100 \text{ GeV}$

At 4.5σ for 30 fb⁻¹ this looks like a possible new channel for light Higgs discovery. **Deserves serious exp. study!**

Common cuts

- $ightharpoonup p_{tV}, p_{tH} > 200 \text{ GeV}$
- ▶ $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30 \text{ GeV}, |\eta_{\ell}| < 2.5]$
- ▶ No extra ℓ , b's with $|\eta| < 2.5$
- ► Real/fake *b*-tag rates: 0.6/0.02
- \triangleright S/\sqrt{B} from 16 GeV window


Missing- E_t channel

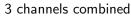
$$Z \to \nu \bar{\nu}, \ W \to \nu [\ell]$$

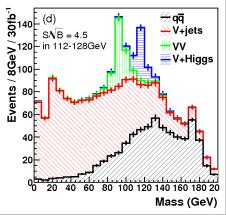
► #_T > 200 GeV

At 4.5σ for 30 fb⁻¹ this looks like a possible new channel for light Higgs discovery. **Deserves serious exp. study!**

combine HZ and HW, $p_t > 200 \text{ GeV}$

Common cuts


- $ightharpoonup p_{tV}, p_{tH} > 200 \text{ GeV}$
- ▶ $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30 \text{ GeV}, |\eta_{\ell}| < 2.5]$
- ▶ No extra ℓ , b's with $|\eta| < 2.5$
- ► Real/fake *b*-tag rates: 0.6/0.02
- ► S/\sqrt{B} from 16 GeV window


Semi-leptonic channel

 $W \rightarrow \nu \ell$

- $\blacktriangleright \not E_T > 30 \text{ GeV } (\& \text{ consistent } W.)$
- ▶ no extra jets $|\eta| < 3, p_t > 30$

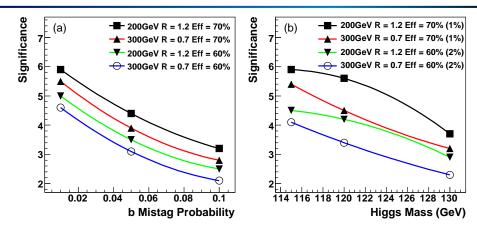
At 4.5σ for 30 fb⁻¹ this looks like a possible new channel for light Higgs discovery. **Deserves serious exp. study!**

Common cuts

- $ightharpoonup p_{tV}, p_{tH} > 200 \text{ GeV}$
- ▶ $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30 \text{ GeV}, |\eta_{\ell}| < 2.5]$
- ▶ No extra ℓ , b's with $|\eta| < 2.5$
- ► Real/fake *b*-tag rates: 0.6/0.02
- ► S/\sqrt{B} from 16 GeV window

3 channels combined

Note excellent VZ, $Z \to b \bar b$ peak for calibration NB: $q \bar q$ is mostly $t \bar t$

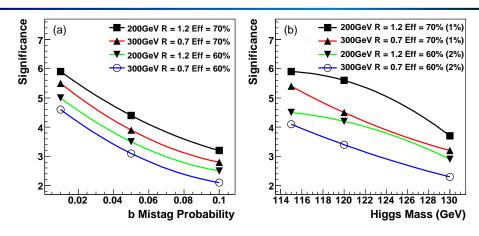

At 4.5σ for 30 fb⁻¹ this looks like a possible new channel for light Higgs discovery. **Deserves serious exp. study!**

How can we be doing so well despite losing factor 20 in X-sct?

	Signal	Background	
Eliminate $t\bar{t}$, etc.	_	×1/3	[very approx.]
$p_t > 200 \; { m GeV}$	$\times 1/20$	$\times 1/60$	[bkgds: $Wb\bar{b}, Zb\bar{b}$]
improved acceptance	$\times 4$	$\times 4$	
twice better resolution	_	$\times 1/2$	
add $Z ightarrow u ar{ u}$	$\times 1.5$	$\times 1.5$	
total	×0.3	×0.017	

much better S/B; better S/\sqrt{B} [exact numbers depend on analysis details]

Impact of *b*-tagging, Higgs mass



Most scenarios above 3σ

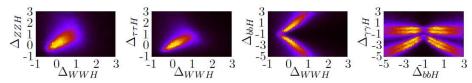
For it to be a significant discovery channel requires decent *b*-tagging, lowish mass Higgs [and good experimental resolution]

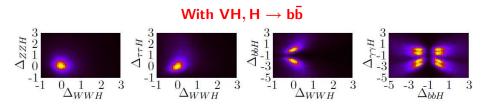
In nearly all cases, looks feasible for extracting WH, ZH couplings

Impact of *b*-tagging, Higgs mass

Most scenarios above 3σ

For it to be a significant discovery channel requires decent *b*-tagging, lowish mass Higgs [and good experimental resolution]


In nearly all cases, looks feasible for extracting WH, ZH couplings


Higgs coupling measurements

You only know it's the SM Higgs if couplings agree with SM expectations. Detailed study of all observable LHC Higgs production/decay channels

carried out by Lafaye, Plehn, Rauch, Zerwas, Duhrssen '09

Without VH, H \rightarrow b \bar{b}

Without direct $H o b \bar{b}$ measurement, errors on couplings increase by $\sim 100\%$

Jets, G. Salam, LPTHE (p. 27)

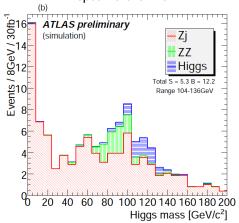
VH Results

ATLAS study

Does any of this hold with a real detector?

ATLAS had WW scattering studies with the k_t algorithm that suggested that general techniques were realistic.

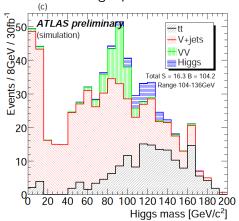
But kinematic region was different ($p_t > 500 \text{ GeV}$). And Higgs also has b-tagging of subjets, . . .


All OK

As of August 2009: ATLAS have preliminary public analysis of this channel ATL-PHYS-PUB-2009-088

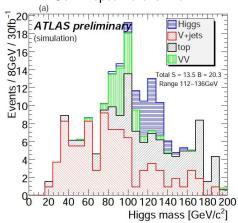
What changes?

- ▶ Inclusion of detector simulation mixture of full and validated ATLFAST-II
- ► Study of triggers
- ▶ New issue: importance of fake b tags from charm quarks
- ▶ New background: Wt production with $t \to bW$, $W \to cs$, giving bc as a Higgs candidate.
- ▶ Larger mass windows, 24 32 GeV rather than 16 GeV for signal, reflecting full detector resolution
- Various changes in details of cuts
- ▶ ATLAS numbers shown for $m_H = 120 \text{ GeV}$ (previous plots: $m_H = 115 \text{ GeV}$)



What changes compared to particle-level analysis?

 $\sim 1.5\sigma$ as compared to 2.1σ Expected given larger mass window



What changes compared to particle-level analysis?

 $\sim 1.5\sigma$ as compared to 3σ Suffers: some events redistributed to semi-leptonic channel

Semi-leptonic channel

What changes compared to particle-level analysis?

 $\sim 3\sigma$ as compared to 3σ Benefits: some events redistributed from missing E_T channel Likelihood-based analysis of all three channels together gives signal significance of

3.7 σ for 30 fb⁻¹

To be compared with 4.2σ in hadron-level analysis for $m_H=120$ GeV With 5% (20%) background uncertainty, ATLAS result becomes 3.5σ (2.8 σ)

Comparison to other channels at ATLAS ($m_H = 120, 30 \text{ fb}^{-1}$):

$$gg \rightarrow H \rightarrow \gamma \gamma$$
 $WW \rightarrow H \rightarrow \tau \tau$ $gg \rightarrow H \rightarrow ZZ^*$ 4.2σ 4.9σ 2.6σ

Extracted from 0901.0512

ATLAS: "Future improvements can be expected in this analysis:"

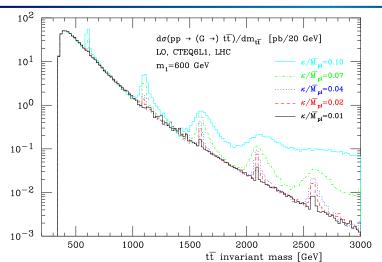
- ▶ b-tagging might be calibrated [for this] kinematic region
- ▶ jet calibration [...] hopefully improving the mass resolution
- background can be extracted directly from the data
- multivariate techniques

CMS is looking at this channel

Biggest difference wrt ATLAS could be jet mass resolution

But CMS have plenty of good ideas that might compensate for worse hadronic calorimeter

Combination of different kinematic regions


- ▶ E.g. in original analysis, $p_t > 300$ GeV (only 1% of VH, but very clear signal) was almost as good as $p_t > 300$ GeV (5% of VH).
- ightharpoonup Treating different p_t ranges independently may have benefits.

Jets, G. Salam, LPTHE (p. 32) $L_{t\bar{t}}$

What about other boosted objects?

e.g. Boosted top

[hadronic decays]

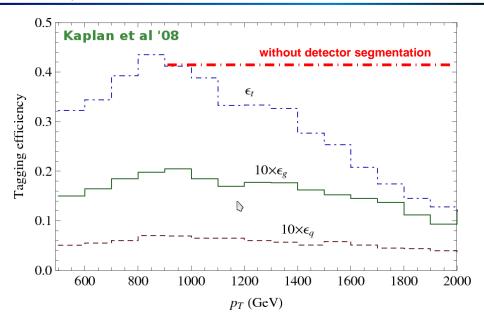
RS KK resonances $\rightarrow t\bar{t}$, from Frederix & Maltoni, 0712.2355

NB: QCD dijet spectrum is \sim 500 times $t\bar{t}$

Tagging boosted top-quarks

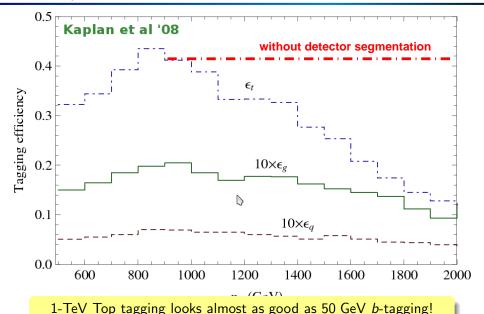
 $\mathsf{High}\text{-}p_t$ top production often envisaged in New Physics processes.

 \sim high- p_t EW boson, but: top has 3-body decay and is coloured.

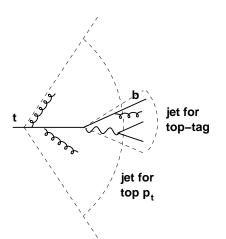

6 papers on top tagging in '08-'09 (at least). All use the jet mass + something extra.

Questions

- ▶ What efficiency for tagging top?
- What rate of fake tags for normal jets?


Rough results for top quark with $p_t \sim 1 \text{ TeV}$					
	"Extra"	eff.	fake		
[from T&W]	just jet mass	50%	10%		
Brooijmans '08	3,4 k_t subjets, d_{cut}	45%	5%		
Thaler & Wang '08	2,3 k_t subjets, z_{cut} + various	40%	5%		
Kaplan et al. '08	3,4 C/A subjets, $z_{cut} + \theta_h$	40%	1%		
Almeida et al. '08	predict mass dist ⁿ , use jet-shape	_	_		
Ellis et al '09	C/A pruning	_	_		
ATLAS '09	3,4 k_t subjets, d_{cut} MC likelihood	90%	15%		

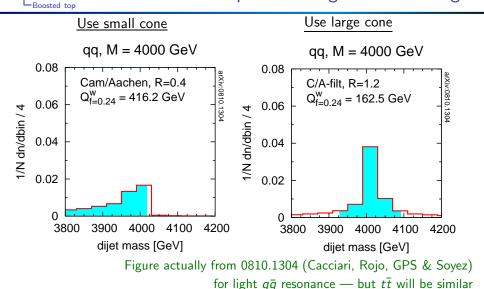
Efficiency v. p_t (ideal detector)


Efficiency v. p_t (ideal detector)

Using (coloured!) boosted top-quarks

If you want to use the tagged top (e.g. for $t\bar{t}$ invariant mass) QCD tells you:

the jet you use to tag a top quark \neq the jet you use to get its p_t


Within inner cone $\sim \frac{2m_t}{p_t}$ (dead cone) you have the top-quark decay products, but no radiation from top ideal for reconstructing top mass

Outside dead cone, you have radiation from top quark

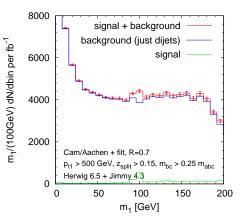
 $\qquad \qquad \text{essential for top } p_t \\ \text{Cacciari, Rojo, GPS \& Soyez '08}$

Impact of using small cone angle

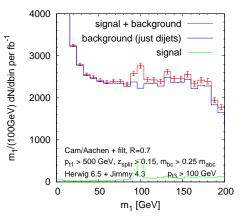
How you look at your event matters: http://quality.fastjet.fr/

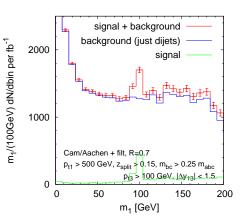
As a final example, a search for neutralinos in R-parity violating supersymmetry.

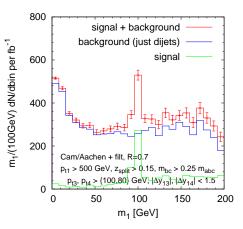
Normal SPS1A type SUSY scenario, *except* that neutralino is not LSP, but instead decays, $\tilde{\chi}_1^0 \to qqq$.


Jet combinatorics makes this a tough channel for discovery

- ▶ Produce pairs of squarks, $m_{\tilde{q}} \sim 500$ GeV.
- lacktriangle Each squark decays to quark + neutralino, $m_{ ilde{\chi}^0_1}\sim 100~{
 m GeV}$
- ▶ Neutralino is somewhat boosted → jet with substructure

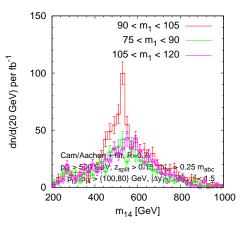

Butterworth, Ellis, Raklev & GPS '09


- ▶ Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(\rho_t > 500 \text{ GeV})$
- Require 3-pronged substructure
- ► And third jet
- And fourth central jet
 - 99% background rejection scale-invariant procedure so remaining bkgd is flat
 - And look at m_{14} using events with m_1 in neutralino peak and in sidebands


- ▶ Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(\rho_t > 500 \text{ GeV})$
- ► Require 3-pronged substructure
- ► And third jet
- And fourth central jet
 - 99% background rejection scale-invariant procedure so remaining bkgd is flat
- And look at m₁₄ using events with m₁ in neutralino peak and in sidebands

- ▶ Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- ► Require 3-pronged substructure
- ► And third jet
 - And fourth central jet
 99% background rejection
 scale-invariant procedure
 so remaining bkgd is flat
 - And look at m₁₄ using events with m₁ in neutralino peak and in sidebands

- ▶ Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- ► Require 3-pronged substructure
- ► And third central jet
- And fourth central jet 99% background rejection scale-invariant procedure so remaining bkgd is flat
- And look at m₁₄ using events with m₁ in neutralino peak and in sidebands



- ▶ Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- ► Require 3-pronged substructure
- ► And third central jet
- ► And fourth central jet

 99% background rejection

 scale-invariant procedure

 so remaining bkgd is flat
- And look at m₁₄ using events with m₁ in neutralino peak and in sidebands

- ▶ Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- ► Require 3-pronged substructure
- And third central jet
- And fourth central jet
 99% background rejection
 scale-invariant procedure
 so remaining bkgd is flat
- And look at m₁₄ using events with m₁ in neutralino peak and in sidebands

Higgs discovery

- ▶ high-p_t limit recovers WH and ZH channel at LHC
- ▶ Separately see *WH*, *ZH* couplings
- ▶ First in-depth experimental study from ATLAS has promising results Work continues in ATLAS. Also being looked at in CMS

New Physics searches

- ▶ Can be used for ID of high- p_t top from decaying multi-TeV resonances 40%/1% efficiency / fake rate is similar to moderate- p_t b-tag performance!
- ► Can be used for ID of EW-scale new particles, e.g. neutralino

<u>General</u>

- Boosted EW-scale particles can be found in jets
- ► Cambridge/Aachen alg. is very powerful (flexible, etc.) tool for this

 Being used in many different ways

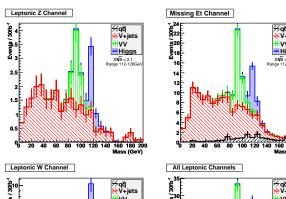
Jets, G. Salam, LPTHE (p. 41) LExtras

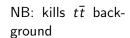
EXTRAS

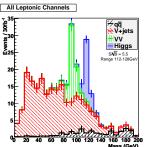
Cross section for signal and the Z+jets background in the leptonic Z channel for $200 < p_{TZ}/\,\text{GeV} < 600$ and $110 < m_J/\,\text{GeV} < 125$, with perfect b-tagging; shown for our jet definition (C/A MD-F), and other standard ones close to their optimal R values.

Jet definition	$\sigma_{\mathcal{S}}/fb$	σ_B/fb	$S/\sqrt{B \cdot \text{fb}}$
C/A, R = 1.2, MD-F	0.57	0.51	0.80
$k_t, R = 1.0, y_{cut}$	0.19	0.74	0.22
SISCone, $R = 0.8$	0.49	1.33	0.42
anti- k_t , $R = 0.8$	0.22	1.06	0.21

Analysis shown without K factors. What impact do they have?


Determined with MCFM, MC@NLO


- ▶ Signal: $K \sim 1.6$
- ▶ *Vbb* backgrounds: $K \sim 2 2.5$
- $t\bar{t}$ backgrounds: $K \sim 2$


for total; not checked for high- p_t part

Conclusion: S/\sqrt{B} should not be severely affected by NLO contributions

Higgs SNB = 3.4 Range 112-128GeV

