

An International Facility for Underground Physics

Outline:

- SNO
- SNOLAB
 - Surface & Underground Facilities
 - Construction Status and Schedule
- Experimental Program
 - SNO+
 - HALO
 - Dark Matter Program (briefly)

It all started with the solar neutrino problem...

- To show that the Sun's luminosity is provided by nuclear fusion in the core
- Solar models by John Bahcall
- Pioneering radiochemical experiment by Raymond Davis, Jr.
- Follow-on experiments in Japan, Italy and Russia
- Discrepancy established at many σ

Expectations - the Standard Solar Model

- Solar calculations correct?
- Experiments correct? ~ consistent but difficult; not measuring same thing → speculation including neutrino oscillations, MSW resonant flavour changes
- Need new idea
 - Herb Chen, UCI

The Sudbury Neutrino Observatory

- Deuterium target (1kT D_2O) \rightarrow 3 reactions
- Herb's idea (1984)... NC is the key
- But np weakly bound in D
 - Deep mine to avoid cosmic rays
 - attention to Low Energy backgrounds
- D_2O + mine \rightarrow Canada (Sudbury)
- 1989 Collaboration and proposal
- 1990 Funding, start of construction
- 1999-2006 data (3 phases)
- 2001 first results
- 2009-10 last results (25 years later)

$$\nu_e + d \rightarrow p + p + e^- - 1.44 \,\mathrm{MeV(CC)}$$

$$v_x + d \rightarrow p + n + v_x - 2.22 \text{ MeV(NC)},$$

$$\nu_x + e^- \rightarrow \nu_x + e^-$$
 (ES),

Séminaire du LAL Orsay

Phase I - pure D_2O (2001)

- NC neutrons detected by capture on d n + d \rightarrow t + y (6.25 MeV)
- Close to analysis threshold of 5.5MeV
- Extract NC/CC ratio from ES and CC rates ignoring NC rate
- Signal extraction by maximum likelihood based on pdf's of Energy, Radial Distribution, angular distribution
- Huge emphasis on calibration to understand detector (~300K calibration constants tracked as function of time - requiring ~20% of livetime dedicated to calibration)
 Phys. Rev. Lett. 87, 071301 (2001)

$$\begin{split} \phi_{\rm CC}^{\rm SNO}(\nu_e) &= 1.75 \pm 0.07 \, ({\rm stat.})^{+0.12}_{-0.11} \, ({\rm syst.}) \pm 0.05 \, ({\rm theor.}) \times 10^6 \, {\rm cm}^{-2} \, {\rm s}^{-1} \\ \phi_{\rm ES}^{\rm SNO}(\nu_x) &= 2.39 \pm 0.34 \, ({\rm stat.})^{+0.16}_{-0.14} \, ({\rm syst.}) \times 10^6 \, {\rm cm}^{-2} \, {\rm s}^{-1}. \end{split}$$

```
\phi_{ES}^{SK}(\nu_x) = 2.32 \pm 0.03 \text{ (stat.)}^{+0.08}_{-0.07} \text{ (syst.)} \times 10^6 \text{ cm}^{-2} \text{ s}^{-1}
```

CC exceeds ES flux by 3.30 indicating presence of non-electron flavours

Phase I - pure D_2O (2001)

- Measurement in background free window in Energy
- Level of neutron background (photodisintegration) not assessed at this point
- Potential exists to measure shape of CC energy spectrum and extract P_{ee} survival probability
- Errors on fluxes from full 3D maximum likelihood fit

Phase I - pure $D_2O(2002)$

- Accumulate more statistics
- Lower analysis energy threshold to 5.0 MeV
- Assess disintegration backgrounds and refit

Phys. Rev. Lett. 89 011301 (2002)

5.3 σ determination of nonelectron neutrino flavour presence

$$\phi_{\rm CC} = 1.76^{+0.06}_{-0.05} \,(\text{stat.})^{+0.09}_{-0.09} \,(\text{syst.}),$$

 $\phi_{\rm ES} = 2.39^{+0.24}_{-0.23} \,(\text{stat.})^{+0.12}_{-0.12} \,(\text{syst.}),$

$$\phi_{\rm NC} = 5.09^{+0.44}_{-0.43} \,(\text{stat.})^{+0.46}_{-0.43} \,(\text{syst.}).$$

 $\varphi_{\rm FS}^{\rm SNO}$ φ_{cc}^{SNO} *φ*_{μr}(10⁶ cm⁻² s⁻¹) 1 0 2 $\varphi_{\rm c}$ (10⁶ cm⁻² s⁻¹) $\phi_{\nu_{\rm e}} = 1.76^{+0.05}_{-0.05} \,(\text{stat.})^{+0.09}_{-0.09} \,(\text{syst.})$

$$\phi_{\nu_{\mu\tau}} = 3.41^{+0.45}_{-0.45} \,(\text{stat.})^{+0.48}_{-0.45} \,(\text{syst.}),$$

Phase II (because we didn't think a priori that Phase I would produce a significant measurement)

 Added 1 tonne of NaCl to the D₂O to enhance neutron capture and increase energy

 $n + {}^{35}Cl \rightarrow {}^{36}Cl + \gamma's$ (8.6 MeV)

- Multiple gammas makes the neutron capture events more isotropic than the Cherenkov events
- Radial spectrum of CC and NC now very similar so less separation power
- Isotropy parameter, β_{14} , introduced

Note role of calibration and simulation in precision understanding of detector response!

Phase II (Salt Phase)

- Modified detector
- Modified analysis
- Blind analysis (as were Phase I analyses)
- Consistent results
- No sign of MSW upturn in P_{ee}, would be nice to see this as further evidence of MSW

Phys. Rev. Lett. 92, 181301 (2004)

$$\begin{split} \phi_{\rm CC} &= 1.68^{+0.06}_{-0.06} \, ({\rm stat.})^{+0.08}_{-0.09} \, ({\rm syst.}), \\ \phi_{\rm ES} &= 2.35^{+0.22}_{-0.22} \, ({\rm stat.})^{+0.15}_{-0.15} \, ({\rm syst.}), \\ \phi_{\rm NC} &= 4.94^{+0.21}_{-0.21} \, ({\rm stat.})^{+0.38}_{-0.34} \, ({\rm syst.}), \end{split}$$

$$\frac{\phi_{\rm CC}}{\phi_{\rm NC}} = 0.340^{+0.023}_{-0.023} \,(\text{stat.})^{+0.029}_{-0.031} \,(\text{syst.}).$$

Séminaire du LAL Orsay

Phase III (because we didn't think that "once" was enough)

- Deploy an array of ³He neutron counters; 40 strings up to 11 m long on a 1m x 1m grid anchored to the bottom of the acrylic vessel
- Provides event by event detection of NC events \rightarrow NCDs

 $n + {}^{3}He \rightarrow t + p (764 \text{ keV})$

 Another independent and blind analysis

$$\phi_{\rm CC} = 1.67^{+0.05}_{-0.04} \,(\text{stat.})^{+0.07}_{-0.08} \,(\text{syst.}),$$

$$\phi_{\rm ES} = 1.77^{+0.24}_{-0.21} \,(\text{stat.})^{+0.09}_{-0.10} \,(\text{syst.}),$$

$$\phi_{\rm NC} = 5.54^{+0.33}_{-0.31} \,(\text{stat.})^{+0.36}_{-0.34} \,(\text{syst.}),$$

$$\frac{\phi_{\rm CC}}{\phi_{\rm NC}} = 0.301 \pm 0.033 \text{ (total)}$$

Phase I, II and III results

- Oscillation parameter analysis with individual SNO Phases
- Phys. Rev. Lett. 101, 111301 (2008)
- Most recent result
 - Low Energy Threshold Analysis (LETA) (4.5 MeV)

arXiv:0910.2984v1 [nucl-ex]

- Improves θ₁₂ constraints by factor of 2
- Still to come...
 - Combined 3 phase analysis

SNOLAB - Objectives

- To promote an International programme of Astroparticle Physics
- To provide a deep experimental laboratory to shield sensitive experiments from penetrating Cosmic Rays
- To provide a clean laboratory
 - Entire lab at Class 2000, or better, to mitigate against background contamination of experiments.
- To provide infrastructure for, and support to, the experiments
- Focus on dark matter, double beta decay, solar & supernova experiments requiring depth and cleanliness.
- Large scale experiments (up to ktonne, not Mtonne)
 But also provide space for prototyping of future experiments.
- Commissioning goal has been to progressively create a significant new space for an active programme as early as possible.

Séminaire du LAL Orsay

SNOLAB Overall Status

- Surface Facility
 - Operational from 2005.
 - Provides offices, conference room, dry, warehousing, IT servers, clean-room labs, detector construction labs, chemical + assay lab
- Underground Construction (Cube Hall, Cryopit, Ladder Labs, Lab Entrance)
 - Excavation complete and outfitting began June 2007.
 - General outfitting in Phase I areas almost complete + Cryopit 5T crane/access.
 - Final infrastructure (Chiller, MPC, HVAC, waste water plant) commissioned
 - First experimental infrastructure installation underway in Cube Hall
 - Ladder labs opened as clean areas, final clean underway
- Experimental Programme
 - Continued operation of DEAP-1 and PICASSO.
 - Current allocations to: PICASSO, DEAP-I, SNO+, DEAP-3600, MiniCLEAN, CDMS, HALO.
 - Anticipated or under discussion: EXOgas 200, COUPP, DarkSide, low background counters to measure 39Ar, future Cobra upgrade...

Surface Facilities

Control Rooms

Underground Facilities

	Excavation		Clean Rm		Laboratory	
	Area	Volume	Area	Volume	Area	Volume
SNO	1,863 m²	16,511 m ³	1,133 m²	13,321 m ³	752 m ²	11,679 m ³
SNOLAB	7,215 m ²	46,648 m ³	4,942 m ²	37,241 m ³	3,055 m ²	29,555 m ³

All clean spaces to be operated as a Class 2000 clean room.

N.C.

Unsealing door to Ladder Labs 5th Aug

Construction Status

- With the "going clean" of the Ladder Labs there is now 3,700 m² of space inside the clean room boundary of the lab. For comparison the surface building is 3,000 m².
- Ladder Labs still require a "fine clean" to bring them to final clean

Facility Construction Schedule

- Contractor work almost done (still some "building automation" and fire alarm tasks).
- Remaining work will be done primarily by SNOLAB personnel (with contractors as necessary).
- Next facility construction activities:
 - Fine cleaning of Ladder Labs
 - Installation of services (plumbing, electrical) in Ladder Labs and Cube Hall.
 - Cryopit: prepare and paint.
 - Renovation of old Personnel Area (reclaim for experiments or infrastructure).

Experimental Programme snor

Experimental Programme snor

Experimental Programme Summary

Experiment	Solar nu	OnuBB	Dark Matter	SuperNovae	Geo nu	Other	Space allocated	Status
SNO+	Ţ	ſ		Ţ	Ţ		SNO Cavern	Underway
PICASSO			ſ				SNO Utility	Running
DEAP-1			ſ				SNO Control	Running
DEAP-3600			ſ				Cube Hall	Underway
miniCLEAN			ſ				Cube Hall	Underway
HALO				J			Halo Stub	Underway
PUPS						Seismicity	Various	Completed
SuperCDMS			ſ				Ladder Labs	Request
EXO-gas		ſ					Ladder Labs	Request
COUPP			ſ				Ladder Labs	Request
DarkSide			J				Ladder Labs	Request
PICASSO- III			J				Ladder Labs	Planning

$0\nu\beta\beta$ with SNO+ z>

- SNO+: ¹⁵⁰Nd \rightarrow ¹⁵⁰Sm + e⁻ + e⁻
 - Uses existing SNO detector. Heavy water replaced by scintillator loaded with ¹⁵⁰Nd. Modest resolution compensated by high statistical accuracy.
 - Requires engineering for acrylic vessel hold down and purification plant. Technologies already developed.
 → 100 meV sensitivity to neutrino mass in 3 yrs of running starting in 2011
 - Capital funding received June 2009.

Other Physics

- Low energy solar neutrinos
- Geo-neutrinos
- Reactor neutrino oscillations
- Supernova neutrino detection

Other SNO+ Physics

Low Energy Solar

→ exploit pep solar neutrinos for precision studies of neutrino-matter couplings

- pep allows for it to be precision
- SNOLAB depths allows for us to do it
 MSW is the most sensitive probe of neutrinomatter couplings (e.g. non-standard interactions) and could reveal new physics

Geo-neutrino & Reactor antineutrino

four times smaller reactor background in the geo-neutrino region than in KamLAND
test competing models of the composition of the continents

- exceptionally well characterized local geology enables residuals to probe the U and Th content of the deep Earth - reactor spectrum "dip" confirms L/E behaviour for neutrino oscillations; helps constrain Δm^2 and θ_{12}

Séminaire du LAL Orsay

The organic liquid is lighter than water so the Acrylic Vessel must be held down.

New scintillator purification systems are required.

Existing AV Support Ropes to be replaced with lower radioactivity Tensylon 1000 tonnes of liquid scintillator (LAB)

(plus 1 tonne of natural Nd for Double Beta Decay)

New AV Hold Down Ropes

Otherwise, the existing detector, electronics etc. are reusable.

Séminaire du LAL Orsay

SNO+ Underway

Séminaire du LAL Orsay

17/11/2009

C.J. Virtue

SNO+ (¹⁵⁰Nd ν - less Double Beta Decay)

Séminaire du LAL Orsay

17/11/2009

Ŧ

HALO - Design Overview

Philosophy - to produce a

- Very low cost
- Low maintenance
- Low impact in terms of lab resources (space)
- Long-term, high livetime

dedicated supernova detector

- "Helium" because of the availability of the ³He neutron detectors from SNO +
 - "Lead" because of high v-Pb cross-sections, low n-capture cross-sections, sensitivity to v_e (dominantly) and v_x complementing water Cerenkov and liquid scintillator detectors

HALO - Design Overview

Lead Array

- 32 three meter long columns of annular Lead blocks
- 76 tonnes total lead mass (864 blocks)
- Neutron detectors
 - Four 3 meter ³He detectors per column
 - 384 meters total length
- Moderator
 - ~250mm Ø schedule 40 PP tubing
- Reflector and Shielding
 - ~15 cm thick graphite blocks
 - 1' of water (boxes) on 5 sides

HALO - SN neutrino signal - Phase 1

- In 76 tonnes of lead for a SN @ 10kpc⁺, MSW oscillated
 - Assuming FD distribution around T=8 MeV for v_{μ} 's, v_{τ} 's.
 - 65 neutrons through v_e charged current channels
 - 29 single neutrons
 - 18 double neutrons (36 total)
 - 20 neutrons through v_x neutral current channels
 - 8 single neutrons
 - 6 double neutrons (12 total)
 - ~ 85 neutrons liberated; ie. 1.1 n/tonne

†- Engel, McLaughlin, Volpe, Phys. Rev. D 67, 013005 (2003)

HALO Underway

Séminaire du LAL Orsay

Dark Matter at SNOLAB

- Noble Liquids: Deap-I, MiniCLEAN, & DEAP-3600, (DarkSide)
 - Single Phase Liquid Argon uses pulse shape discrimination. Two-phase (DarkSide)
 - Prototype DEAP-I operational in SNOLAB now. Successful demonstration of PSD and test bench for DEAP/CLEAN design/operations.
 - Construction for DEAP-3600 and MiniCLEAN underway. DEAP-3600 capital funding granted (CA\$26M with SNO+)
 - Will measure Spin Independent cross-section.
- Superheated Liquids: PICASSO (COUPP)
 - Superheated droplet detectors. Insensitive to MIPS radioactive background at operating temperature, threshold devices
 - PICASSO Currently operational in SNOLAB, demonstration of alpha rejection and test bench for scale-up of detector volumes
 - Will measure Spin Dependent cross-section.
 - Solid State: SuperCDMS
 - State of the art Ge crystals with ionisation and phonon readout.
 - Currently operational in Soudan. Next phase will benefit from SNOLAB depth to reach desired sensitivity. Test facility in Ladder Labs under discussion
 - Most sensitivity to Spin Independent cross-section.

DEAP-3600/MiniCLEAN Underway

Séminaire du LAL Orsay

17/11/2009

Ŧ

Séminaire du LAL Orsay

17/11/2009

C.J. Virtue

Status of SNOLAB

- SNOLAB Phase I infrastructure complete
 - Surface facility, Cube Hall, Ladder Labs
 - Final outfitting and cleaning underway
- Facility is now in transition to experimental programme
 - Deployment of support systems for first experiments underway (SNO+, DEAP-3600, MiniCLEAN, HALO)
 - Smaller scale experiments continue operations (DEAP-I, PICASSO)
 - Design/discussions on additional systems advanced (COUPP, CDMS, DarkSide)
- Additional space available, especially when Phase II (Cryopit) completed
- SNOLAB is looking forwards to contributing to the world programme of underground research facilities

end

Detailed Space

	Experimental Space	Length	Width	Height	Area	
			(f†)	(f†)	Shoulder/Back	(sq ft)
Existing	SNO Cavern	Cavern	70(dia)		85'/100'	3848
		Utility Drift	187	23		4300
		Control Room	57	20		1140
	South Drift	Drift	106	17	10'/16'	1802
Phase I	Ladder Labs	Drift C1	105	20	12'/19'	2100
		Drift C2	75	25	17'/25'	1875
		Drift B&D	360	15	10'/15'	5400
	Rectangular Hall	Hall	60	50	50'/65'	3000
		Utility Drift	115	20	10'/17'	2300
		Staging Area	45	16	10'/15'	720
		Control Room	62	18	10'/16'	992
Phase II	Cryopit	Cavern	50(dia)		50'/65'	1963
		Utility Drift	141	20	10'/17'	2820
		Staging Area	66	16	10'/15'	1056
		Control Room	64	16	10'/15'	1024
					Existing SNO	11090
					Phase I	27477
					Phase II	34340

