

ATLAS SM HIGGS COMBINATION

Gen Steele, on behalf of the ATLAS collaboration. Higgs Hunting 2012.

Outline

- Statistical procedure used in separate channels and combined search
- □ Status of the search, pre July 4th
- Input channels, including updates
 Results

Statistics tools and techniques I

3

Based on the profile likelihood ratio, the test statistic used is:

$$\widetilde{q}_{\mu} = -2 \ln \frac{\mathcal{L}(\text{data} \mid \mu, \hat{\theta}_{\mu})}{\mathcal{L}(\text{data} \mid \hat{\mu}, \hat{\theta})}$$

 $0 \le \hat{\mu} < \mu$

with condition:

 θ : all the nuisance parameters μ : signal strength

 $\hat{\mu}, \hat{\theta}$: estimators for unconditional likelihood max.

$$\theta_{\mu}$$
 : max. likelihood estimator for given μ

95% confidence level on exclusion limits is found by adjusting μ until CLs=0.05

$$CL_s(\mu) = \frac{p_\mu}{1 - p_b}$$

CLs is used to test the signal hypothesis. Expected limits (and p0) are estimated using a representative (Asimov) dataset

Statistics tools and techniques II

4

 p_0 tests the background hypothesis – i.e. quantifies the presence of a signal by showing the probability a fluctuation in the background could reproduce the same excess of events.

Using a test statistic defined as;

$$q_0 = -2\ln \frac{\mathcal{L}(\text{data} \mid 0, \hat{\theta}_0)}{\mathcal{L}(\text{data} \mid \hat{\mu}, \hat{\theta})}$$

Calculate the p-value for the background-only hypothesis, p_{0.} (Calculated for every mass point, => considered as a 'local' p-value.)

 $\hat{\mu}$ is the best fit value of the signal strength, found by allowing parameters to float and minimising the test statistic. Colloquially $\hat{\mu}$ is known as 'the cyan band plot'.

SM Higgs production and decay modes.

- ATLAS searches for the SM Higgs in multiple channels
- Channels contribute differently over the m_H search region
- Sensitivity is maximised by combining channels

Increased SM Higgs production with 8 TeV data.

Backgrounds increase even more.

ATLAS 2011 data results

6

Combination of 2011 data representing an integrated luminosity of between 4.6-4.9 fb⁻¹ per channel at a centre of mass energy of 7 TeV.

Excluded at 95% confidence level: 110.0 to 117.5, 118.5 to 122.5, and 129 to 539 GeV

Excess of events observed around $m_H \sim 126$ GeV with a local significance of 2.5 σ .

Best fit signal strength shows that the excess is about 1 x SM production cross section.

Plots taken from: arXiv:1207.0319

Input channels used in summer 2012 combination

Higgs Decay	Subsequent	Sub-Channels	m_H Range	$\int \mathbf{L} dt$			
	Decay		[GeV]	$[fb^{-1}]$			
$H o \gamma \gamma$	_	9 sub-channels { $p_{T_t} \otimes \eta_{\gamma} \otimes \text{conversion}$ } \oplus {2-jets}	110–150	4.8			
$H \rightarrow ZZ^{(*)}$	$\ell\ell\ell'\ell'$	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	110-600	4.8			
	$\ell\ell v \bar{v}$	$\{ee, \mu\mu\} \otimes \{\text{low, high pile-up}\}$	200-280-600	4.7			
	$\ell\ell qar q$	{b-tagged, untagged}	200-300-600	4.7			
$H \rightarrow WW^{(*)}$	<i>ℓνℓν</i>	$\{ee, e\mu, \mu\mu\} \otimes \{0\text{-jets}, 1\text{-jet}, 2\text{-jets}\} \otimes \{\text{low, high pile-up}\}$	110-200-300-600	4.7			
	$\ell v q \overline{q}'$	$\{e, \mu\} \otimes \{0\text{-jets}, 1\text{-jet}, 2\text{-jets}\}$	300-600	4.7			
$H \to \tau^+ \tau^-$	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jets}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jets}, VH\}$	110–150	4.7			
	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jets}\} \otimes \{E_{\mathrm{T}}^{\mathrm{miss}} < 20 \text{ GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \ge 20 \text{ GeV}\}$	110 150	4.7			
		$\oplus \{e, \mu\} \otimes \{1\text{-jet}\} \oplus \{\ell\} \otimes \{2\text{-jets}\}$	110-130				
	$ au_{ m had} au_{ m had}$	{1-jet}	110–150	4.7			
$VH \rightarrow b\overline{b}$	$Z \rightarrow \nu \overline{\nu}$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\}$	110-130	4.6			
	$W \to \ell \nu$	$p_{\rm T}^{W} \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110-130	4.7			
	$Z \to \ell \ell$	$p_{\rm T}^{\rm Z} \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110-130	4.7			
$2012 \ \sqrt{s} = 8 \text{ TeV}$							
$H \rightarrow \gamma \gamma$	_	9 sub-channels { $p_{T_t} \otimes \eta_{\gamma} \otimes \text{conversion}$ } \oplus {2-jets}	110–150	5.9			
$H \rightarrow ZZ^{(*)}$	$\ell\ell\ell'\ell'$	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	110-600	5.8			

85 sub-channels in total go into this combination.

Additions and updates: $H \rightarrow \gamma \gamma$

- 8
- In 2011 data, photon identification based on NN combination of calorimeter shower shape variables.
- □ 2012 data photon identification uses re-optimized cuts.
- □ In both 2011 and 2012 analyses a 10th sub-channel has been

Additions and updates: $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$

Improved electron reconstruction

9

- and identification.
- Kinematic selections optimized for a low mass Higgs
- Z mass constraint introduced to improve resolution.
 - Low mass events: Z required to be in 50-106 GeV window.
 - Higher mass events: both lepton pairs to pass this constraint.
 - Constraint leads to improvement in mass resolution of the order 10%

Systematic Uncertainties

- 10
- The same systematic uncertainty may affect more than one channel - correlated effects.
- Correlated systematics from:
 - Theoretical predictions e.g. production cross-sectionsLuminosity
 - Detector uncertainty e.g. jet energy scale, b-tagging
- □ Analyses with 2012 and 2011 data:
 - In $\gamma\gamma$ channel all systematics are considered 100% correlated between years except luminosity
 - In *llll* channel all except luminosity and data-driven background normalizations are 100% correlated between years

Combination results - CLs.

11

Expected exclusion: 110-582 GeV (calculated for background only hypothesis) Observed exclusion: 110-122.6 & 129.7-558 GeV

Combination results -p₀

12

- Maximum local significance (including energy scale systematics) = 5.0σ .
- Maximum local significance at $m_H = 126.5 \text{ GeV}$
- Expected local significance here is 4.6σ (expected is calculated for signal +background hypothesis)
- Away from excess excellent agreement between data and background-only hypothesis

Combination results - $\hat{\mu}$

13

Best fit of the signal strength at $m_H = 126.5 \text{ GeV}$: $\mu = 1.2 \pm 0.3$

The best fit signal strength is slightly higher in H-> $\gamma\gamma$ and H->ZZ->*llll* than in other channels but still consistent with the SM.

Signal strength (µ)

Combination results - by year/channel

Similar expected significances

- High resolution channels drive sensitivity
- Other channels still important to investigate the nature of the signal

Combination results - contours

- Contours can be used to check the consistency of the global picture
- The test statistic is based on a 2D profile likelihood ratio, shown as a function of μ and $m_{\text{H.}}$ $\lambda(\mu, m_H) = \frac{L(\mu, m_H, \hat{\hat{\theta}}(\mu, m_H))}{L(\hat{\mu}, \hat{m}_H, \hat{\theta})}$

Without a strong signal, plots would be simply a horizontal line.

Curves show approximate ~68% (solid) and ~95% (dashed) confidence limits.

Cross marks best fit point.

 $\mu = 1$ on the y-axis represents the Standard Model.

Conclusions.

- ATLAS has performed a search for the SM Higgs over the mass region 110-600 GeV
- □ 12 channels total in combination
 - **2** channels: 7 & 8 TeV data, ~10.7 fb⁻¹
 - other channels: 7 TeV data, ~4.9 fb⁻¹
- \square observed an excess of events near $m_{\rm H}{\sim}126.5$ GeV with a local significance of 5.0σ
- □ Fitted signal strength of 1.2±0.3
- □ More work to come...

The happy news...

18

ATLAS and CMS

are pleased to announce the arrival of

a bouncing baby boson!!!

After a gestation period similar to an elephant, the proud parents are delighted by their latest discovery.

The name of the new boson will be confirmed once a bit more is known about baby.

More information on baby boson will come all in good time. Maybe they'll even end up with siblings.

Sample systematics - signal

	$H ightarrow au^+ au^-$		$U \rightarrow \alpha \alpha$	$H \rightarrow WW^{(*)}$		$H \rightarrow ZZ^{(*)}$		
	$\ell \tau_{had} 3 v$	$ au_{\ell} au_{\ell} + jet$	$\Pi \rightarrow \gamma \gamma$	$\ell \nu \ell \nu$	$\ell \nu q q$	lll	$\ell\ell\nu\nu$	$\ell\ell q q$
Luminosity	$+3.8 \\ -3.6$	$+3.8 \\ -3.6$	$^{+4.0}_{-3.8}$	$+3.8 \\ -3.6$	$+3.8 \\ -3.6$	$+3.9 \\ -3.8$	$+3.8 \\ -3.6$	$+3.8 \\ -3.6$
e/γ eff.	±3.5	± 2.0	$+13.5 \\ -11.9$	± 2.0	±0.9	±2.9	±1.2	±1.2
e/γ E. scale	$^{+1.3}_{-0.1}$	± 0.3	-	± 0.4	-	-	± 0.7	± 0.4
e/γ res.	-	$^{+0.2}_{-0.5}$	-	$^{+0.20}_{-0.05}$	-	-	± 0.25	± 0.1
μ eff.	± 1.0	± 2.0	-	-	± 0.3	±0.16	± 0.7	± 0.5
μ res. Id.	-	$^{+0.2}_{-0.5}$	-	$^{+0.02}_{-0.04}$	-	-	± 1.1	± 1.1
μ res. MS.	-	-	-	$^{+0.04}_{+0.08}$	-	-	$^{+1.1}_{-1.0}$	± 1.1
Jet/ τ /MET E. scale	$+18.9 \\ -16.4$	$+3.4 \\ -10.0$	-	$+4.46 \\ -6.47$	$^{+18.4}_{-15.5}$	-	±1.6	±15.0
JER	-	± 2.0	-	$^{+1.8}_{-1.7}$	$^{+9.0}_{-8.2}$	-	$^{+0.3}_{-0.0}$	$\substack{+4.0\\-0.0}$
MET	_	$+4.4 \\ -5.3$	-	$^{+1.8}_{-1.7}$	-	_	-	-
<i>b</i> -tag eff.	-	-	-	±0.5	-	-	±0.3	±3.7
au eff.	± 9.1	-	-	-	-	-	-	

For a Higgs mass hypothesis of 120 GeV except for H->WW->lvqq, H->ZZ->llvv and H->ZZ->llqq which is for 300 GeV

Sample systematics - background

	$H ightarrow au^+ au^-$			$H \rightarrow WW^{(*)}$		$H \rightarrow ZZ^{(*)}$		
	$\ell \tau_{had} 3 v$	$ au_\ell au_\ell + jet$	$H \rightarrow \gamma \gamma$	$\ell \nu \ell \nu$	$\ell v q q$	lll	$\ell\ell\nu\nu$	$\ell \ell q q$
Luminosity	$+3.0 \\ -2.9$	$+3.8 \\ -3.6$	-	±0.2	-	$+3.7 \\ -3.6$	$^{+2.4}_{-2.3}$	$^{+0.3}_{-0.2}$
e/γ eff.	±2.4	+0.5 -1.6	-	±2.3	± 0.8	±1.6	± 0.8	±0.1
e/γ E. scale	$^{+0.9}_{-0.3}$	± 0.8	-	$^{+0.2}_{-0.1}$	-	-	$^{+1.7}_{-1.6}$	± 0.1
e/γ res.	-	$+0.3 \\ -2.6$	-	$^{+0.1}_{-0.0}$	-	-	±0.6	± 0.2
μ eff.	±1.4	$+0.5 \\ -1.6$	-	-	±0.3	±0.1	± 0.5	±0.03
μ res. Id.	-	$+0.3 \\ -2.6$	-	$-0.03 \\ -0.06$	-	-	$^{+1.7}_{-1.6}$	± 0.2
μ res. MS.	-	-	-	$^{+0.00}_{-0.02}$	-	-	$^{+1.7}_{-1.6}$	± 0.2
Jet/ τ /MET E. scale	$^{+10.0}_{-8.9}$	$+7.0 \\ -9.8$	-	$+8.5 \\ -10.4$	-	-	$+6.9 \\ -5.2$	±1.0
JER	-	± 2.5	-	$+3.3 \\ -3.0$	-	-	$\substack{+1.8\\-0.0}$	$^{+0.3}_{-0.0}$
MET	-	$^{+0.4}_{-2.7}$	-	$^{+0.6}_{-0.5}$	-	-	-	_
<i>b</i> -tag eff.	-	-	-	±1.8	-	-	$+7.0 \\ -5.5$	± 0.2
au eff.	±7.2	-	-	-	-	-	-	