Searches for the SM scalar boson in the $H \rightarrow W^{+}W^{-}$ channels with the ATLAS detector

Higgs Hunting 2012, Orsay

Olivier Arnaez Johannes Gutenberg Universität Mainz on behalf of the ATLAS collaboration

18th of July 2012

2012 is a great year !

	2011	2012
E _{CM}	7 TeV	8 TeV
Inst. lumi.	~3.10 ³³ cm ⁻² s ⁻¹	[3-7].10 ³³ cm ⁻² s ⁻¹
Int. lumi	(~500 pb ⁻¹ /week)	25 fb ⁻¹ /year ?
Bunch spacing	50 ns	50 ns

- Price to pay is high pile-up
 - It complicates :
 - Triggering
 - Reconstruction and identification of physics objects
 - Resolutions (Etmiss)
 - Computing resources
 - Simulation

18th of July 2012

Searches for the SM scalar boson

- Missing element of the Standard Model in order to explain the masses of the elementary particles
- Large production cross-section at LHC thanks to the large presence of gluons
- WW decays make searches in this channel the most efficient in the range in mass ~120-190 GeV

18th of July 2012

A Toroidal LHC ApparatuS

Recent 2011 results : lujj (1)

- Analysis selection targeted to high masses :
 - Electron or muon above $p_{T} = 40 \text{ GeV}$ (Veto extra one with $p_{T} > 20 \text{ GeV}$)
 - 2 jets within $|\eta| < 2.8$ above $p_{\tau} = 40$ GeV (one with $p_{\tau} > 60$ GeV)
 - $\Delta R_{ii} < 1.3$ to suppress W+jets
 - b-tagged jet veto to suppress top background
 - Binning with 0 or 1 extra jet within $|\eta| < 4.5$
 - Missing transverse energy above 40 GeV
 - W mass constrain on m_{ij} : [71, 91] GeV
 - Alternative selection for VBF with increased acceptance, opposite hemisphere and separation requirements for the tagging jets $(\Delta \eta_{_{ii}} > 3)$ and $m_{_{ii}} > 600$ GeV
- Background dominated by W+jets (~70%), top (~20%), Z+jets, diboson and multijets
- Non-resonant background modelled by a smooth function validated on MC and fitted in the W mass sidebands: $f(x) = \frac{1}{1 + |a(x-m)^b|} e^{-c(x-200)}$
- Results well consistent with background-only hypothesis within 300 and 600 GeV

Recent 2011 results : WH \rightarrow WWW \rightarrow $|_{V}|_{V}|_{V}$

- Analysis selection:
 - Three isolated leptons above 10 GeV within $|\eta| < 2.5$
 - At least one triggering (i.e. >24 GeV for electrons or >21 GeV for muons)
 - Missing transverse energy above
 - 40 GeV for same flavour opposite-signs lepton pairs
 - 25 GeV for different flavour opposite-signs pairs
 - Counting of jets above $p_{\tau} = 25 \text{ GeV}$ with $|\eta| < 4.5$
- $\begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & &$

200

120

Z mass veto

	$W(H \rightarrow WW)$	$Z(H \rightarrow WW)$	$V(H \rightarrow \tau \tau)$	$H \rightarrow ZZ$	Observed	Total Bkg.
Pre-selection	1.78±0.15	3.56 ± 0.30	0.66 ± 0.06	0.97 ± 0.08	2077	2240 ± 260
Z enriched	1.36±0.11	3.50 ± 0.28	0.54 ± 0.05	0.97 ± 0.08	2056	2220 ± 260
At most 1 jet,						
not <i>b</i> -tagged	1.24 ± 0.12	2.22 ± 0.21	0.48 ± 0.05	0.80 ± 0.07	1801	1960 ± 240
$E_{\rm T,rel}^{\rm miss} > 40 { m GeV}$	0.61±0.05	0.54 ± 0.05	0.10 ± 0.01	0.01 ± 0.01	114	115±10
Z mass veto	0.47±0.05	0.04 ± 0.01	0.04 ± 0.01		13	9.9 ± 2.2
All cuts	0.34±0.06	0.03 ± 0.01	0.02 ± 0.01		3	3.7±0.9
Z depleted	0.43±0.06	0.06 ± 0.01	0.12 ± 0.02		21	12.49 ± 1.07
At most 1 jet,						
not <i>b</i> -tagged	0.40 ± 0.06	0.04 ± 0.01	0.11 ± 0.02		7	4.9 ± 0.9
$E_{\rm T,rel}^{\rm miss} > 25 { m GeV}$	0.26±0.03	0.02 ± 0.01	0.04 ± 0.01		1	1.22±0.24
All cuts	0.18±0.04	0.01±0.01	0.03±0.01		0	0.25±0.15

Based on ATLAS-CONF-2012-078

18th of July 2012

Olivier Arnaez - Search for the SM scalar boson in WW pairs in ATLAS

6/22

300

280

m_н [GeV]

Higgs decaying WW $\rightarrow I_{\rm V}I_{\rm V}$

Presentation based on the latest 2012 results at ATLAS-CONF-2012-098 (or earlier publications for illustrative figures)

- Presence of two isolated high-pT leptons with opposite charges
 → suppresses part of the large multi-jets and W/Z+jets background
- Large missing transverse energy due to the escaping neutrinos \rightarrow distinguishing from Drell-Yan Z/y* processes
- Standard Model scalar boson with spin 0 \rightarrow small lepton opening angle \rightarrow topology different from the di-boson WW continuum
- Privileged channel thanks to its high branching ratio but limited mass resolution
- « Counting experiment » carried out on the Higgs mass spectrum between 110 and 200 GeV
- Results presented here for an integrated luminosity of 5.8 fb⁻¹ collected in 2012 at $\sqrt{s} = 8$ TeV in the opposite flavour (eµ and µe) channels

Selection (1) : leptons & missing E

- Each event should contain two tightly-identified isolated leptons with opposite charges
 - p_T > 15 GeV
 - At least one with $p_{\tau} > 25$ GeV to fire the trigger
- Dilepton invariant mass m₁ > 10 GeV
- In order to reduce the background without any neutrino in the final state (Z+jets, di-jets), a large missing transverse energy is required
 - Actually, to reduce the impact on the missing transverse energy of particles energy mismeasurements, a projection (E_Tmiss_{rel}) of this E_Tmiss is used:
 - $E_T miss_{rel} = E_T miss$ if $\Delta \phi > \pi/2$
 - $E_{T} miss_{rel} = E_{t} miss.sin(\Delta \phi) \text{ if } \Delta \phi > \pi/2$ With $\Delta \phi = min(\Delta \phi(E_{T} miss, I), \Delta \phi(E_{T} miss, jet))$
 - E_Tmiss_{rel} > 25 GeV

18th of July 2012 Olivier Arnaez - Search for the SM scalar boson in WW pairs in ATLAS

Selection (2) : Jet counting

- The background composition and the scalar boson production mode (ggF, VBF, VH) being different, it is more efficient to proceed in optimizing the selection cuts as a function of the number of reconstructed jets
- Because of pile-up effects, the jet counting uses only jets with $E_{_T} > 25 \text{ GeV}$ and $|\eta| < 2.5$ or $E_{_T} > 30 \text{ GeV}$ and $2.5 < |\eta| < 4.5$
- Analysis split into the 0, 1 and 2-jets channels :
 - Highest sensitivity in the 0-jet channel (WW is the main background)
 - 1-jet channel also very sensitive but large top background
 - 2-jets channel suffers from lack of statistics but allows for probing the VBF production

18th of July 2012

Selection (3) : analysis-dependent cuts

- In 0-jet, DY/Z is a large background which can be rejected by a cut on the transverse momentum of the di-lepton system $p_{\tau}(II) > 30 \text{ GeV}$
- In 1-jet, top is the dominant background after the preselection :
 - Rejection of events with *b-tagged* jet (track impact parameters and topological cuts on secondary vertices)
 - $|p_{T}tot| < 30$ GeV with $p_{T}tot$ the vectorial sum of the leptons momenta, the jet and the missing transverse energy direction
 - $Z \rightarrow \tau \tau$ veto : $|M_{\pi} M_{z}| < 25$ GeV using the collinear approximation for M_{π}
- In 2-jets, on top of the 1-jet cuts, the two "tag" (i.e. highest pT) jets must be separated by $|\Delta y|>3.8$, must have $m_{\mu} > 500$ GeV and no other jet with $p_{\tau} > 20$ GeV in between

Selection (4) : Topological cuts

- The continuum QCD WW and top backgrounds can be controlled using cuts on:
 - the dilepton invariant mass: $m_{\parallel} < 50$ GeV for 0/1-jet

 m_{\parallel} < 80 GeV for 2-jets

 the azimuthal angle between the leptons (exploiting the spin correlation in the scalar boson decays):

• the transverse mass: $m_T^2 = m_v^2 + 2(e_v |\mathbf{p}_{T,i}| - \mathbf{p}_{T,v} \cdot \mathbf{p}_{T,i})$ and $e_v^2 = \mathbf{p}_{T,v} \cdot \mathbf{p}_{T,v} + m_v^2$ (v=visible, i=invisible)

Selection (4): Topological cuts

- The continuum QCD WW and top backgrounds can be controlled using cuts on:
 - the dilepton invariant mass: $m_{\mu} < 50$ GeV for 0/1-jet

 m_{\parallel} < 80 GeV for 2-jets

the azimuthal angle between the leptons (exploiting the spin correlation in the scalar boson decays):

 $\Delta \phi_{\parallel} < 1.8$

the transverse mass: $m_T^2 = m_v^2 + 2(e_v | \mathbf{p}_{T,i} | - \mathbf{p}_{T,v} \cdot \mathbf{p}_{T,i})$ and $e_v^2 = \mathbf{p}_{T,v} \cdot \mathbf{p}_{T,v} + m_v^2$ (v=visible, i=invisible)

12/22

Control regions (1)

• The dominant backgrounds are estimated from data :

Control regions (2)

m_⊤ [GeV]

Composition of main control regions

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
WW 0-jet	0.3 ± 0.0	531 ± 5	43 ± 2	104 ± 3	62 ± 4	11 ± 4	38 ± 1	789 ± 9	820
WW 1-jet	0.1 ± 0.0	112 ± 3	13 ± 1	80 ± 3	34 ± 3	9 ± 4	7.7 ± 0.8	256 ± 6	255
Top 1-jet	2.2 ± 0.1	39 ± 2	10 ± 1	489 ± 6	195 ± 7	28 ± 7	7 ± 1	768 ± 12	840
Top 2-jet	4.9 ± 0.1	45 ± 2	11.7 ± 1.0	6371 ± 23	315 ± 10	45 ± 8	52 ± 3	6840 ± 26	7178

18th of July 2012

Olivier Arnaez - Search for the SM scalar boson in WW pairs in ATLAS

14/22

Control regions (3)

Composition of main control regions

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
WW 0-jet	0.3 ± 0.0	531 ± 5	43 ± 2	104 ± 3	62 ± 4	11 ± 4	38 ± 1	789 ± 9	820
WW 1-jet	0.1 ± 0.0	112 ± 3	13 ± 1	80 ± 3	34 ± 3	9 ± 4	7.7 ± 0.8	256 ± 6	255
Top 1-jet	2.2 ± 0.1	39 ± 2	10 ± 1	489 ± 6	195 ± 7	28 ± 7	7 ± 1	768 ± 12	840
Top 2-jet	4.9 ± 0.1	45 ± 2	11.7 ± 1.0	6371 ± 23	315 ± 10	45 ± 8	52 ± 3	6840 ± 26	7178

18th of July 2012

Olivier Arnaez - Search for the SM scalar boson in WW pairs in ATLAS

15/22

Systematic uncertainties

- For m_H~125 GeV, the cross-section uncertainty is at the ~17% level for 0-jet and ~36% for the 1-jet channel, ~10% for the VBF channel
- The underlying event and the parton showering modelling induce uncertainties at the 7-8% level on the signal
- Experimental sources of systematics are varied within their uncertainties, the dominant ones are the jet and missing transverse energy scales and resolutions

Source (0-jet)	Signal (%)	Bkg. (%)
Inclusive ggF signal ren./fact. scale	13	0
1-jet incl. ggF signal ren./fact. scale	10	0
Parton distribution functions	8	2
Jet energy scale	7	4
WW modelling and shape	0	5
QCD scale acceptance	4	2
WW normalisation	0	4
W+jets fake factor	0	4
Lepton isolation	3	3
Source (1-jet)	Signal (%)	Bkg. (%)
1-jet incl. ggF signal ren./fact. scale	28	0
2-jet incl. ggF signal ren./fact. scale	16	0
WW normalisation	0	14
<i>b</i> -tagging efficiency	0	8
Top normalisation	0	6
Pile-up	5	5

18th of July 2012

Results

Cutflow evolution in the different signal regions

	1								
H+ 0-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
Jet Veto	47.5 ± 0.4	1308 ± 9	125 ± 4	184 ± 4	109 ± 6	850 ± 32	138 ± 4	2714 ± 34	2691
$p_T^{\ell\ell} > 30 \text{ GeV}$	43.4 ± 0.4	1077 ± 8	99 ± 4	165 ± 4	98 ± 5	47 ± 8	102 ± 2	1589 ± 14	1664
$m_{\ell\ell} < 50 \mathrm{GeV}$	34.9 ± 0.4	244 ± 4	33 ± 2	28 ± 2	17 ± 2	5 ± 2	29 ± 1	356 ± 6	421
$\Delta \phi_{\ell\ell} < 1.8$	33.6 ± 0.4	234 ± 4	32 ± 2	27 ± 2	17 ± 2	4 ± 2	25 ± 1	339 ± 6	407
H+ 1-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
1 jet	24.9 ± 0.3	396 ± 5	74 ± 3	1652 ± 12	479 ± 12	283 ± 20	68 ± 3	2953 ± 27	2874
<i>b</i> -jet veto	21.1 ± 0.3	334 ± 4	56 ± 2	349 ± 6	115 ± 6	236 ± 18	53 ± 2	1144 ± 21	1115
$ \mathbf{p}_{T}^{\text{tot}} < 30 \text{ GeV}$	12.2 ± 0.2	210 ± 3	30 ± 2	139 ± 4	63 ± 5	124 ± 14	23 ± 2	590 ± 15	611
$Z \rightarrow \tau \tau$ veto	12.2 ± 0.2	204 ± 3	29 ± 2	133 ± 3	61 ± 5	98 ± 12	23 ± 2	547 ± 14	580
$m_{\ell\ell} < 50 \mathrm{GeV}$	9.2 ± 0.2	37 ± 1	10 ± 1	21 ± 1	12 ± 2	16 ± 5	8.0 ± 0.9	104 ± 6	122
$\Delta \phi_{\ell\ell} < 1.8$	8.6 ± 0.2	34 ± 1	9 ± 1	20 ± 1	11 ± 2	3 ± 2	6.4 ± 0.7	84 ± 4	106
<i>H</i> + 2-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
≥ 2 jets	14.5 ± 0.2	139 ± 3	30 ± 2	7039 ± 24	376 ± 11	104 ± 12	71 ± 4	7759 ± 29	7845
<i>b</i> -jet veto	9.6 ± 0.2	95 ± 2	19 ± 1	356 ± 6	44 ± 4	62 ± 9	21 ± 2	597 ± 12	667
$ \Delta Y_{ij} > 3.8$	2.0 ± 0.1	8.3 ± 0.6	2.0 ± 0.4	31 ± 2	5 ± 1	4 ± 2	1.4 ± 0.5	52 ± 3	44
Central jet veto (20 GeV)	1.6 ± 0.1	6.5 ± 0.5	1.3 ± 0.3	16 ± 1	4 ± 1	1 ± 1	0.5 ± 0.3	29 ± 2	22
$m_{\rm ii} > 500 {\rm GeV}$	1.1 ± 0.0	3.2 ± 0.4	0.7 ± 0.2	6.2 ± 0.7	1.8 ± 0.6	0.0 ± 0.0	0.0 ± 0.2	12 ± 1	13
$ \mathbf{p}_{T}^{tot} < 30 \text{ GeV}$	0.8 ± 0.0	1.7 ± 0.3	0.3 ± 0.1	2.5 ± 0.5	0.8 ± 0.4	0.0 ± 0.0	0.0 ± 0.2	5.4 ± 0.7	6
$Z \rightarrow \tau \tau$ veto	0.7 ± 0.0	1.8 ± 0.3	0.3 ± 0.1	2.4 ± 0.4	0.8 ± 0.4	0.0 ± 0.0	0.0 ± 0.2	5.2 ± 0.7	6
$m_{\ell\ell} < 80 \text{ GeV}$	0.7 ± 0.0	0.6 ± 0.2	0.1 ± 0.1	0.8 ± 0.3	0.3 ± 0.2	0.0 ± 0.0	0.0 ± 0.2	1.9 ± 0.5	3
$\Delta \phi_{\ell\ell} < 1.8$	0.6 ± 0.0	0.5 ± 0.2	0.1 ± 0.1	0.5 ± 0.3	0.3 ± 0.2	0.0 ± 0.0	0.0 ± 0.2	1.4 ± 0.4	2
									<u> </u>
ATLAS Preliminary	ta ₩ BG (sys ⊕ sta WZ/ZZ/Wγ	^{t)} – Ö 60–	ATLAS Prelin	ninarv 📥 Data	H BG (sys⊕ stat)	e e	ATLAS Prel	liminary 📥 🛄	a //// BG (sys⊕
$\sqrt{s} = 8 \text{ TeV}$. $\int Ldt = 5.8 \text{ fb}^{-1}$	Single Top	- 0	$\sqrt{2} = 8 \text{ TeV} \int 1 dt = 5$	8 fb ⁻¹	Single Top	25 - 25 - C	√s – 8 ToV ∫ I dt –	-58 fb ⁻¹	γ Single Top
$H \rightarrow W/W^{(*)} \rightarrow W/W + 0$ into	jets 📃 W+jets	50	VS = 0 IeV, J Lut = 5.	Z+jet	s 🔲 W+jets		$13 = 0 10^{(*)}$		ets 🔲 W+jets
$\rightarrow \psi \psi \psi \rightarrow \mu \psi e \psi + 0$ jets	H [125 GeV]		$H \rightarrow VVVV^{\gamma} \rightarrow ev\mu v + 0$	jets	🔲 H [125 GeV]	= t 20 - '	H→VVVV [™] →evµv/µ	uvev + 1 jet	🔲 H [125 GeV
			.						
. +† Signa	l region		↑			∃ 15⊢	. ↓		
	U	30-	. '+			-	+ -	-	
		E E	1100000				200	· -	
		20-	. + 22	.		- 10F			
		= <u> </u> E				E E			
		∃ 10 ^E	· · · ·	in the second		5[
		E		**1 +					
100 150 200	250	300 0	100 1	50 200	250		100		250
	<i>т</i> т [G	eV]	100	200	 [Ge	V1			 m
	1.5	-				•J _			$n_{\rm T}$

18th of July 2012

Events / 10 GeV

Olivier Arnaez - Search for the SM scalar boson in WW pairs in ATLAS

17/22

Results (2)

 Enriched signal region selected using a transverse mass window (not used in the final result) defined by

 $0.75 \text{ x m}_{H} < \text{m}_{T} < \text{m}_{H}$

here below for $m_{_{\rm H}}$ = 125 GeV :

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
H + 0-jet	20 ± 4	101 ± 13	12 ± 3	8 ± 2	3.4 ± 1.5	1.9 ± 1.3	15 ± 7	142 ± 16	185
H+1-jet	5 ± 2	12 ± 5	1.9 ± 1.1	6 ± 2	3.7 ± 1.6	0.1 ± 0.1	2 ± 1	26 ± 6	38
H+2-jet	0.34 ± 0.07	0.10 ± 0.14	0.10 ± 0.10	0.15 ± 0.10	-	-	-	0.35 ± 0.18	0

Final statistical treatment uses a fit of the transverse mass distributions :

Results (3)

- Background-subtracted transverse mass distribution overlaid to the Standard Model scalar boson signal prediction on the left exhibiting a signal-like shape
- p0 plot on the right for the $H \rightarrow W^+W^- \rightarrow IvIv$ analysis using L=5.8 fb⁻¹ shows how unlikely is the background-only hypothesis
- p-value at 125 GeV is 0.0008 corresponding to a 3.1 σ deviation
- Due to the limited mass resolution of this channel, the excess is visible on this Figure on a broad mass range

2011 + 2012 combined results

- Combining 2011 and 2012 data analyses results, the exclusion at 95% CLs was expected for masses above 124 GeV in the absence of a signal
- Due to the excess of observed events, the low mass signal region can not be excluded
- The p-value observed at 125 GeV is 0.003 corresponding to a 2.8 σ deviation
- The injection plot on the right (corresponding to an injected SM Higgs at 125 GeV) shows that the shape and normalization of p₀ are in agreement with the presence of a signal at this mass

2011 + 2012 combined results (2)

- The fitted signal strength parameter as a function of m_{μ} in black on the left figure shows the good agreement with the expected result for a signal hypothesis of m_{μ} = 125 GeV in red
- The fitted signal strength at 125 GeV is $\mu = 1.4 \pm 0.5$
- Despite the limited mass resolution, the $H \rightarrow W^+W^- \rightarrow IvIv$ channel is in good agreement with the $H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$ results

Conclusion

- Year 2011 was a very nice year in terms of Standard Model scalar boson mass exclusion...
- Year 2012 is the year of discovery !

- A large excess of data over the Monte Carlo has been observed in the $H \rightarrow W^*W^- \rightarrow IvIv$ channel
- The excess is compatible with the (spin 0) Standard Model scalar boson prediction for a mass around 125 GeV

 $\mu = 1.4 \pm 0.5$

• These results will be documented in a paper in common with the ZZ and diphoton analyses, to be submitted at the end of the month

Backup slides

Monte Carlo samples

Process	Generator	m_H (GeV)	$\sigma \cdot \text{Br}(\text{pb})$
ggF	POWHEG [18]+PYTHIA8 [19]	125	0.442
VBF	POWHEG [20]+PYTHIA8	125	$35 \cdot 10^{-3}$
WH/ZH	PYTHIA8	125	$25 \cdot 10^{-3}$
$q\bar{q}/g \rightarrow WW$	MC@NLO [21]+HERWIG [22]		5.68
$gg \rightarrow WW$	GG2WW [23]+HERWIG		0.16
tī	MC@NLO+HERWIG		238.1
tW/tb/tqb	AcerMC [24]+PYTHIA8		84
inclusive W	ALPGEN [25]+HERWIG		$37 \cdot 10^{3}$
inclusive Z/γ^*	ALPGEN+HERWIG		$15 \cdot 10^3$
$Z^{(*)}Z^{(*)} \to 4l$	POWHEG+PYTHIA8		1.24
$WZ^{(*)}$	MADGRAPH [26, 27]+PYTHIA [[28]	1.54
$W\gamma^*$	MADGRAPH [29]+PYTHIA		9.26
$W\gamma$	ALPGEN+HERWIG		369

2012 results

Recent 2011 results : luji

Non-resonant background modelled by a smooth function

$$f(x) = \frac{1}{1 + |a(x-m)^b|} e^{-c(x-200)}$$

√s=7 TeV

dt=4.7 fb

600

M_µ[GeV]

550

validated on MC and fitted in the W mass sidebands

Results well consistent with background-only hypothesis with 300 and 600 GeV

450

500

350

ATLAS

Expected

Observed

H+0/1/2i, $H\rightarrow WW\rightarrow h$ ii

400

± 1σ $\pm 2\sigma$

95% C.L. limit on σ/σ_{SM}

1

 10^{-1}

300