Search for the SM Higgs boson in the decay channel H→ZZ^(*)→4I in ATLAS

Luis R Flores Castillo University of Wisconsin-Madison

On behalf of the ATLAS Collaboration

Higgs Hunting 2012 July 19, 2012 Orsay France

Introduction

- Signature: $H \rightarrow ZZ^{(*)} \rightarrow 4I \ (I = e, \mu)$
- The "golden channel":
 - Small rates, but high S/B
 - Can be fully reconstructed; mass resolution ~2% at 130 GeV
- Cross section times branching ratio (at m_H=125 GeV):
 - ∼ 4 fb at √s=7 TeV
 - ∼ 5 fb at √s=8 TeV
- Backgrounds:
 - Irreducible: $pp \rightarrow ZZ^{(*)} \rightarrow 4I$
 - Reducible: *Z*+*jets*, *Zbb*, *ttbar* (sizeable at low Higgs masses)
- Mass range under consideration: 110 GeV to 600 GeV
- Four final states: **4e**, **4**μ, **2e2**μ, **2**μ**2e**

Previous ATLAS results

- February 2012 (Phys. Lett. B710 (2012) 383-402):
 - Complete 2011 dataset (4.8 fb⁻¹)
 - Excluded: 134-156, 182-233, 256-265, 268-415 GeV
 - Observed excesses at 125, 244, 500 GeV (2.1σ, 2.2σ, 2.1σ, local)

Dataset

- 7 TeV dataset (2011):
 - 5.3 fb⁻¹ recorded, 4.8 fb⁻¹ for physics
 - Peak stable luminosity 3.6x10³³ cm⁻²s⁻¹
- 8 TeV dataset (2012):
 - 6.3 fb⁻¹ recorded, 5.8 fb⁻¹ for physics
 - Peak stable luminosity 6.8x10³³ cm⁻²s⁻¹
- Substantially more pileup in 2012; need to
 - maintain level of detector performance
 - ensure proper modeling in simulation

S

Lepton reconstruction and identification

Electrons

- Improved reconstruction
 - New pattern finding/track fit
- Improved identification
 - Pile-up robust
 - Higher rejection and efficiency than in 2011

Muons

- Combine Inner Detector (ID) tracks with tracks in Muon Spectrometer (MS)
- Extended coverage:
 - ID tracks + energy deposits in calorimeter (|η|<0.1, p_T>15GeV)
 - MS stand-alone (2.5<|η|<2.7)

Updated analysis, selection

Updated analysis for 2011 and 2012 data

- Improved expected sensitivity for low m_H
- Estimate backgrounds using data (sidebands, control regions)
- Development based only on 2011 data and 2012 control regions

Selection

- Single lepton and di-lepton triggers
- At least two pairs of opposite-charge, same-flavor leptons (e,mu)
- p_T thresholds: 20, 15, 10, 7 GeV (6 GeV for muons)
- $50 < m_{12} < 106 \text{ GeV}, m_{41}$ -dependent cut on $m_{34}, m_{34} < 115 \text{ GeV}$
- All same-flavor, opposite-sign pairs m_{II}>5 GeV (J/Psi veto)
- $\Delta R(l, l') < 0.1 (0.2)$ for all same (different)-flavor
- Tracking and calorimeter isolation: Ptcone20/p_T<0.15, Etcone20/E_T<0.3 (0.15 for muons outside the acceptance of the tracker)

 Acceptance of the tracker
- $|d_0/\sigma(d_0)| < 3.5$ (6.5 for electrons)

Mass resolution

- Main discriminant variable: 4-lepton invariant mass
- Resolution crucial for sensitivity
- At low m_H, detector resolution dominates width
- Z-mass constraint improves resolution
 - From 1.6 2.1% to 1.3 - 1.9% (for m_H=130 GeV)

Irreducible (ZZ^(*)): MC simulation normalized to theory cross section [both gg and qq production (PowHeg, qq2ZZ), MCFM NLO xs]

Reducible (II+jets and tt):

- Comparable to ZZ in the low mass region
- Estimated using data-driven methods
- Background composition depends on flavor of subleading lepton pair \rightarrow different approaches for *II*+ $\mu\mu$ and *II*+ee:

II+μμ (4μ, 2e2μ):

- ttbar and Zbb from a fit to m12
- ttbar from $e\mu + \mu\mu$
- *II+ee (2e2µ, 4e)*:
- Z+XX control samples
- 3I + I (same-sign)

(nominal) (cross check)

(nominal)

(cross check)

 General strategy: Loosen or revert selection, obtain composition, extrapolate to signal region

Fit to m₁₂

- Loosened selection on subleading leptons (enhance tt, reduce ZZ):
 - No isolation cuts
 - At least one should fail the impact parameter cut
- tt and Z+jets estimated via a fit Chebychev + BreitWigner⊗CrystalBall
- Extrapolate to signal region via MC-based efficiency (validated in Z+µ control region)

 $ll+\mu\mu$

[nominal]

tt yield cross check using eµ+µµ

Requirements:

- Leading e⁺µ⁻ pair with 50<m_{eµ}<106 GeV + two muons (done independently for same-sign and opposite-sign muons)
- As main analysis, but no isolation or IP cuts on subleading muons
- Veto events with a Z

	7 TeV	8 TeV
Expected	11.0 ± 0.6	18.9 ± 1.1
Observed	8	16

- Extrapolated to signal region
- Results compatible with the m₁₂ fit (nominal method)

[nominal]

Z+XX control samples

X: Electrons from heavy flavor, Electrons from photon Conversions, jets misidentified as electrons ("Fakes")

The idea

- Loosen requirements on the two subleading electrons
- Classify each of the two as (E)lectron, (C)onversion or (F)ake Nine types of events (EE, EC, EF, CE, CC, CF, FE, FC, FF) [p_T-ordered]
- Using MC-based efficiencies, determine how many of each type is expected in the signal region
- Classification as Electron, Conversion or Fake based on
 - Transition radiation hits,
 - Number of hits in the innermost pixel layer (the *b*-layer),
 - Fraction of energy deposited in first layer of the EM calorimeter,
 - Lateral containment along ϕ in the 2^{nd} layer of the EM calorimeter

[nominal]

Z+XX control samples

 Events on each class (based on reconstruction quantities) are a mixture of *true* ee, ec, ef, ...

- Composition fractions from MC are used to obtain the expected true composition of each class
 - Limited Z+XX MC; efficiencies obtained from Z+X MC
 - Reweighted to Z+XX p_T spectrum
 - Verified good agreement w/data after isolation, IP and all cuts.
- Final estimate: expected true composition * efficiency (true class → signal region) Σ_j Σ_i (true type i)*(efficiency of true i to be reco'd as j in the signal region)
- Low event numbers; toy MC used to obtain central value and uncertainty

[nominal]

ll+ee

Data/MC comparison

	4 <i>e</i>		2µ2e	
	Data	MC	Data	MC
EE	32	22.7 ± 4.8	31	24.9 ± 5.0
EC	6	6.0 ± 2.5	2	1.9 ± 1.4
EF	18	19.0 ± 4.4	26	15.3 ± 3.9
CE	4	8.8±3.0	6	5.1 ± 2.3
CC	1	5.3 ± 2.3	6	4.2 ± 2.0
CF	12	8.8±3.0	15	15.3 ± 3.9
FE	16	5.7 ± 2.4	12	8.4 ± 2.9
FC	6	6.5 ± 2.6	7	4.3 ± 2.1
FF	12	17.4 ± 4.2	16	33.6 ± 5.8
Total	107	100 ± 10	121	113±11

- Opposite-sign subleading
 electrons
- Estimate based on samesign subleading electrons also obtained as cross check

(8 TeV data)

[cross-check]

ll+ee

3l + l

Three highest p_T leptons pass all analysis cuts

Last electron passes good track and basic electron id cuts (nSiHits \geq 7, nPixel \geq 1, R_n).

2D fit using MC templates for

- Number of *b*-layer hits
- Transition radiation hits

(in the calorimeter endcap, the latter is replaced by an energy fraction)

L. R. Flores Castillo

Search for the SM $H \rightarrow ZZ^{(*)} \rightarrow 4I$ with ATLAS

Control Regions

- Isolation and impact parameter cuts not applied to subleading di-lepton
- Normalized to datadriven estimates
- Good data/MC agreement in shape and normalization

Summary of background estimations

8 TeV

7 TeV

Method	Estimated	Method	Estimated
	number of events		number of events
m_{12} fit: Z + jets contribution	$0.51 \pm 0.13 \pm 0.16^{\dagger}$	m_{12} fit: Z + jets contribution	$0.25 \pm 0.10 \pm 0.08^{\dagger}$
m_{12} fit: $t\bar{t}$ contribution	$0.044 \pm 0.015 \pm 0.015^{\dagger}$	m_{12} fit: $t\bar{t}$ contribution	$0.022 \pm 0.010 \pm 0.011^{\dagger}$
$t\bar{t}$ from $e^{\pm}\mu^{\mp} + \mu^{\pm}\mu^{\mp}$	$0.058 \pm 0.015 \pm 0.019$	$t\bar{t}$ from $e^{\pm}\mu^{\mp} + \mu^{\pm}\mu^{\mp}$	$0.025 \pm 0.009 \pm 0.014$
2 <i>e</i> 2µ		2 <i>e</i> 2µ	
m_{12} fit: Z + jets contribution	$0.41 \pm 0.10 \pm 0.13^{\dagger}$	m_{12} fit: Z + jets contribution	$0.20\pm0.08\pm0.06^{\dagger}$
m_{12} fit: $t\bar{t}$ contribution	$0.040 \pm 0.013 \pm 0.013^{\dagger}$	m_{12} fit: $t\bar{t}$ contribution	$0.020 \pm 0.009 \pm 0.011^{\dagger}$
$t\bar{t}$ from $e^{\pm}\mu^{\mp} + \mu^{\pm}\mu^{\mp}$	$0.051 \pm 0.013 \pm 0.017$	$t\bar{t}$ from $e^{\pm}\mu^{\mp} + \mu^{\pm}\mu^{\mp}$	$0.024 \pm 0.009 \pm 0.014$
2µ2e		2µ2e	
$\ell\ell + e^{\pm}e^{\mp}$	$4.9\pm~0.8~\pm0.7^{\dagger}$	$\ell\ell + e^{\pm}e^{\mp}$	$2.6\pm 0.4 \pm 0.4^{\dagger}$
$\ell\ell + e^\pm e^\pm$	$4.1\pm 0.6 \pm 0.8$	$\ell\ell + e^\pm e^\pm$	$3.7\pm 0.9 \pm 0.6$
$3\ell + \ell$ (same-sign)	$3.5\pm 0.5 \pm 0.5$	$3\ell + \ell$ (same-sign)	$2.0\pm 0.5 \pm 0.3$
4 <i>e</i>		4 <i>e</i>	
$\ell\ell + e^{\pm}e^{\mp}$	$3.9\pm~0.7~\pm0.8^{\dagger}$	$\ell\ell + e^{\pm}e^{\mp}$	$3.1\pm 0.6 \pm 0.5^{\dagger}$
$\ell\ell + e^\pm e^\pm$	$3.1\pm 0.5 \pm 0.6$	$\ell\ell + e^\pm e^\pm$	$3.2\pm 0.6 \pm 0.5$
$3\ell + \ell$ (same-sign)	$3.0\pm 0.4 \pm 0.4$	$3\ell + \ell$ (same-sign)	$2.2\pm 0.5 \pm 0.3$

More than one method per channel, compatible results Uncertainties 20%-70% depending on background and data sample

L. R. Flores Castillo

Summary of background estimations

8 TeV

7 TeV

Method	Estimated	Method	Estimated
	number of events		number of events
4μ			
m_{12} fit: Z + jets contribution	$0.51 \pm 0.13 \pm 0.16^{\dagger}$	m_{12} fit: Z + jets contribution	$0.25 \pm 0.10 \pm 0.08^{\dagger}$
m_{12} fit: $t\bar{t}$ contribution	$0.044 \pm 0.015 \pm 0.015^{\dagger}$	m_{12} fit: $t\bar{t}$ contribution	$0.022 \pm 0.010 \pm 0.011^{\dagger}$
$t\bar{t}$ from $e^{\pm}\mu^{\mp} + \mu^{\pm}\mu^{\mp}$	$0.058 \pm 0.015 \pm 0.019$	$t\bar{t}$ from $e^{\pm}\mu^{\mp} + \mu^{\pm}\mu^{\mp}$	$0.025 \pm 0.009 \pm 0.014$
2 <i>e</i> 2µ		2e2µ	!
m_{12} fit: Z + jets contribution	$0.41 \pm 0.10 \pm 0.13^{\dagger}$	m_{12} fit: Z + jets contribution	$0.20 \pm 0.08 \pm 0.06^{\dagger}$
m_{12} fit: $t\bar{t}$ contribution	$0.040 \pm 0.013 \pm 0.013^{\dagger}$	m_{12} fit: $t\bar{t}$ contribution	$0.020 \pm 0.009 \pm 0.011^{\dagger}$
$t\bar{t}$ from $e^{\pm}\mu^{\mp} + \mu^{\pm}\mu^{\mp}$	$0.051 \pm 0.013 \pm 0.017$	$t\bar{t}$ from $e^{\pm}\mu^{+} + \mu^{\pm}\mu^{+}$	$0.024 \pm 0.009 \pm 0.014$
2µ2e		2μ2ε	?
$\ell\ell + e^{\pm}e^{\mp}$	$4.9\pm~0.8~\pm0.7^{\dagger}$	$\ell\ell + e^{\pm}e^{\mp}$	$2.6\pm 0.4 \pm 0.4^{\dagger}$
$\ell\ell + e^{\pm}e^{\pm}$	$4.1\pm 0.6 \pm 0.8$	$\ell\ell + e^{\pm}e^{\pm}$	$3.7\pm 0.9 \pm 0.6$
$3\ell + \ell$ (same-sign)	$3.5\pm 0.5 \pm 0.5$	$3\ell + \ell$ (same-sign)	$2.0\pm 0.5 \pm 0.3$
4 <i>e</i>			
$\ell\ell + e^{\pm}e^{\mp}$	$3.9\pm~0.7~\pm0.8^{\dagger}$	$\ell\ell + e^{\pm}e^{\mp}$	$3.1\pm~0.6~\pm0.5^{\dagger}$
$\ell\ell + e^{\pm}e^{\pm}$	$3.1\pm 0.5 \pm 0.6$	$\ell\ell + e^{\pm}e^{\pm}$	3.2± 0.6 ±0.5
$3\ell + \ell$ (same-sign)	$3.0\pm 0.4 \pm 0.4$	$3\ell + \ell$ (same-sign)	$2.2\pm 0.5 \pm 0.3$

More than one method per channel, compatible results Uncertainties 20%-70% depending on background and data sample

L. R. Flores Castillo

Results of event selection

- For m_{4l} >160 GeV, data 20-30% above MC-expected in 2011 and 2012
- Events consistent with ZZ production
- Reflected in the ATLAS ZZ production cross-section measurement

Results of event selection

(m₄₁ in 125±5 GeV)

L. R. Flores Castillo

Exclusion limits 95% CL limit on α/σ_{SM}^{0} 95% CL limit on α/σ_{SM}^{0} Observed CL_a Observed CL ATLAS Preliminary ATLAS Preliminary Expected CL_s ····· Expected CL $H \rightarrow ZZ^{(^{\star})} \rightarrow 4I$ $H \rightarrow ZZ^{(*)} \rightarrow 4I$ ±1σ ±1σ √s=7 TeV,∫Ldt =4.8 fb⁻¹ √s=7 TeV, ∫Ldt =4.8 fb⁻¹ $\pm 2\sigma$ $\pm 2\sigma$ √s=8 TeV,∫Ldt =5.8 fb⁻¹ √s=8 TeV, ∫Ldt =5.8 fb⁻¹ 10| 10 10 10 110 200 300 600 400 500 180 110 120 130 150 160 170 140 m_H [GeV] m_H [GeV]

- Exclusion limits using CLs, profile likelihood ratio
- Exclusion: Expected: 124-164 and 176-500 [GeV] Observed: 131-162 and 170-460 [GeV]
- Much weaker than expected at 120-130 GeV

Significance of excess

- At high m_H, small fluctuations from bg
- Consistent excesses in 2011 and 2012
- Combined: 3.4σ @ 125 GeV (with LEE for the range 100-141 GeV: 2.5σ)

	m _H [GeV]	Obs	Ехр
2012	125.0	2.7σ	2.1σ
2011	125.5	2.3σ	1.7σ
Combined	125.0	3.4σ	2.6σ

Signal Strength

- μ = (best fit signal rate at m_H)/(expected SM rate at m_H)
- Best fit value at m_H =125 GeV (lowest p_0): 1.3 ± 0.6

Likelihood contours

- Signal strength (µ) vs m_H
- 2D likelihood fit; approximate 68% and 95% CL contours

Summary

Updated analysis

- Progress on lepton performance and pile-up robustness
- Improved sensitivity in the low mass region
- Multiple, robust background estimation methods
- An excess of events is observed at m_H~125 GeV
 - Size and position consistent between 2011 and 2012 data
 - Combining the two datasets, local significance of **3.4σ** 2.5σ global significance in the range 110-141 GeV

Backup slides

m_{4µ} = 125.1 GeV

p_T (muons)= 36.1, 47.5, 26.4, 71 .7 [GeV] m₁₂= 86.3 GeV, m₃₄= 31.6 GeV 15 reconstructed vertices

 $m_{4e} = 124.6 \text{ GeV}$

 p_T (electrons)= 24.9, 53.9, 61.9, 17.8 [GeV] m_{12} = 70.6 GeV, m_{34} = 44.7 GeV 12 reconstructed vertices

m_{2e2µ} = 123.9 GeV

 p_T (eeµµ)= 18.7, 76, 19.6, 7.9 [GeV] m_{ee} = 87.9 GeV, $m_{\mu\mu}$ = 19.6 GeV 12 reconstructed vertices

Search for the SM $H \rightarrow ZZ^{(*)} \rightarrow 4I$ with ATLAS

 $pp \rightarrow Z \rightarrow 4I$

- Relax selection
 - m₁₂>30 GeV, m₃₄>5GeV
 pT(muons) > 4 GeV
 - -pr(muons) > 4 GeVCross check of analysi
- Cross check of analysis configuration
- Indicates reasonable performance of lepton reconstruction and identification

In $m_z \pm 10$ GeV:

- Expected: 65±5
- Observed: 57

Per channel

200

200

250

m₄₁ [GeV]

250

m₄ [GeV]

L. R. Flores Castillo

Search for the SM H→ZZ^(*)→4I with ATLAS

Effect of the Z mass constraint

ZZ normalization from data

2011 data

2012 data

2011 data

