

Search for Higgs boson in models beyond SM at CMS

Aruna Kumar Nayak IRFU, CEA, Saclay (On behalf of CMS Collaboration)

> Higgs Hunting Workshop Orsay, France

Overview

Higgs boson in MSSM

- Neutral Higgs boson : bb, $\tau\tau$, $\mu\mu$
- Charged Higgs boson : τv

Higgs boson in Next-to-MSSM

• A very light CP odd scalar boson : $a_1 \rightarrow \mu^+ \mu^-$

Doubly charged Higgs boson

• Doubly charged Higgs boson Φ^{++} in exotic models like Type-II seesaw mechanism

Higgs boson in SM with 4th generation

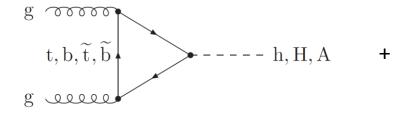
• Re-interpret searches for SM Higgs boson in the contest of SM with 4 generation of fermions

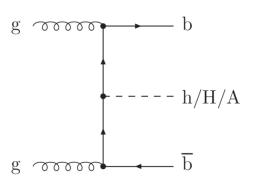
Higgs boson in MSSM

Two Higgs doublet => 5 physical bosons

- Three neutrals : h, H (CP even), A (CP odd)
- Two charged : H[±]
- Controlled by two parameters at tree level
 - m_A and tan β

$$\tan\beta = \frac{v_2}{v_1}$$


 $\Phi_1 = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \phi_1^+ \\ v_1 + \phi_1^0 \end{array} \right)$

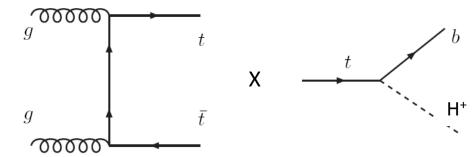

 $\Phi_2 = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \phi_2^+ \\ v_2 + \phi_2^0 \end{array} \right)$

$$M_{H^+}^2 = M_A^2 + M_W^2$$

$$M_{h/H}^2 = \frac{1}{2} \left(M_A^2 + M_Z^2 \mp \sqrt{(M_A^2 + M_Z^2)^2 - 4M_A^2 M_Z^2 \cos^2 2\beta} \right)$$

MSSM Higgs production at LHC

Neutral Higgs production and decay :


- Dominant decay mode : bb and $\tau\tau$
- Charged Higgs production and decay :

For $M_{H+} \leq m_{top}$:

 $pp \rightarrow t \overline{t} \rightarrow b H^{\pm} \overline{b} W^{\mp}$ with $t \rightarrow b H^{+}$

For $M_{H+} \ge m_{top} : pp \rightarrow tbH^{\pm}$ (Not Yet analyzed by CMS)

MSSM Higgs search channels

- $pp \rightarrow \phi b, \phi \rightarrow bb$
 - Semileptonic b decays (jet containing a muon)
 - Hadronic b decays
- $pp \rightarrow \phi, \phi \rightarrow \tau\tau$
 - $e+\mu$ (very clean channel, low statistics)
 - $e+\tau_{had}$ (larger background, high statistics)
 - $\mu + \tau_{had}$ (smaller background, high statistics)
- pp $\rightarrow \phi, \phi \rightarrow \mu \mu$
- pp \rightarrow tt, t \rightarrow H⁺b, H⁺ \rightarrow τv
 - (1) $H^{\pm} \to \tau_h \nu, W^{\mp} \to q_i \bar{q}_j$ (2) $H^{\pm} \to \tau_h \nu, W^{\mp} \to \ell \nu$
 - (3) $H^{\pm} \to \tau \nu, \tau \to e(\mu)\nu, W^{\mp} \to \mu(e)\nu$

 $\tau_{had} : hadronic \, \tau \, decay$

5

 $\phi:\mathsf{h},\mathsf{H},\mathsf{A}$

$\phi \rightarrow bb$ Analysis

<u>Semileptonic</u>

• Trigger :

Muon+1/2 Jets ≥ 1/2 b-tagged

• Offline :

Muon P_T > 15 GeV (no Isolation applied)

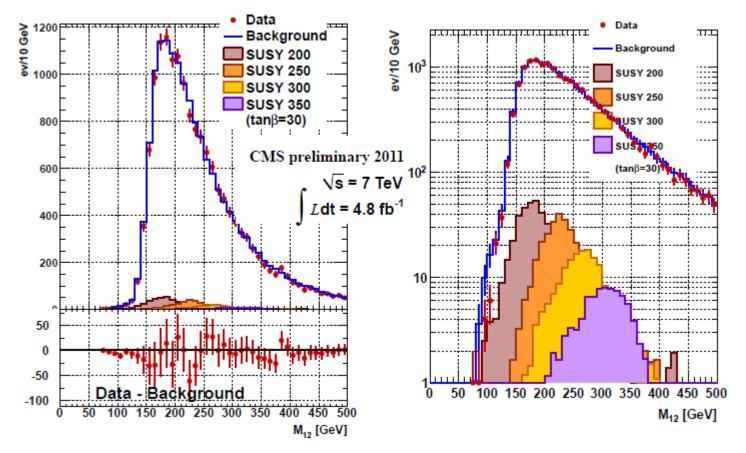
Jets

≥ 2 Jets of P_T > 30 GeV + 3rd Jet of P_T > 20 GeV | η |(jets) < 2.6, all 3 b-tagged Muon is within one of two leading jets

The major background, QCD, is estimated from data. The other minor backgrounds, ttbar and Z(bb)+jets Is taken from MC.

≥ 3 Jets: $P_T 1st > 46 (60) GeV$ $P_T 2nd > 38 (53) GeV$ $P_T 3rd > 20 GeV$ $|\eta|(jets) < 2.2$ all 3 b-tagged

Hadronic

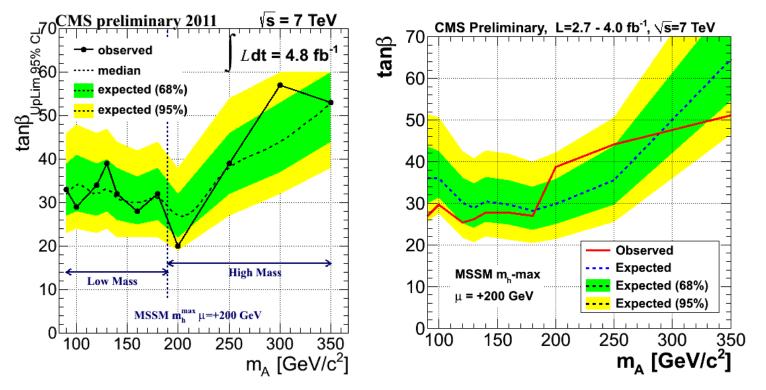

2/3 Jets

 \geq 2 b-tagged

Jet P_T Threshold depends on Higgs Mass hypothesis: lower (higher) Thresholds used for M ϕ < 180 GeV (M ϕ > 180 GeV), driven by Trigger Thresholds

Data in Agreement with background prediction M_{12} Resolution ~15%

Ista



$\phi \rightarrow bb$ Exclusion Limits

CMS PAS HIG-12-027 Semileptonic

CMS PAS HIG-12-026 Hadronic

Upper Limit on pp $\rightarrow \phi b$, $\phi \rightarrow bb$ production by fitting observed M₁₂ distribution. Non-observation of $\phi \rightarrow bb$ Signal excludes region of large tan β in MSSM Parameter space

$\phi \rightarrow \tau \tau$ Analysis

Event Selection

> Trigger Events triggered by $e+\mu$, $e+\tau_{had}$ and $\mu+\tau_{had}$ Triggers, P_T thresholds 10-20 GeV/c

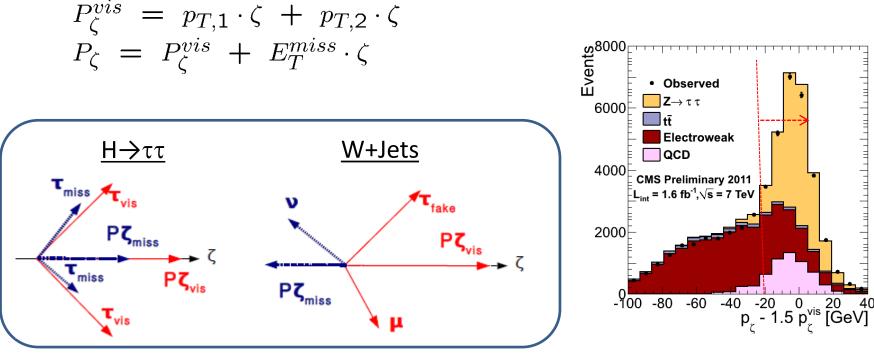
> Lepton Selection Electrons $P_T > 10-20 \text{ GeV}$ $|\eta| < 2.1 (2.3 \text{ for } e + \mu)$ isolated

Muons $P_T > 10-20 \text{ GeV}$ $|\eta| < 2.1$ isolated

τ_{had} $P_T > 20 \text{ GeV}$ |η| < 2.3Tau Identification Veto against e/μ

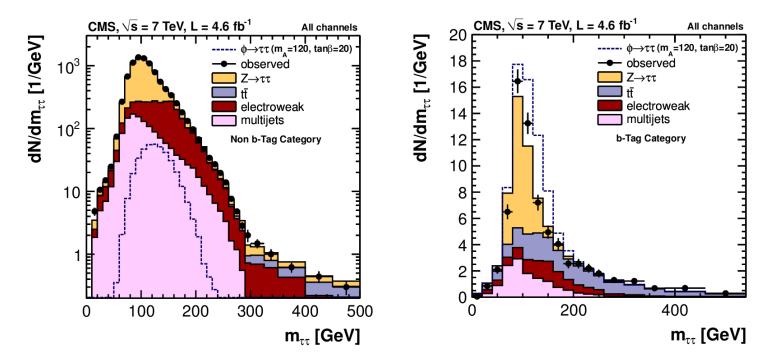
Opposite Charge Lepton Pair

Veto Events with additional isolated Leptons


Selected Events analyzed in 2 Categories: non-b-Tag and b-Tag
 b-Tag : ≤ 1 jet with p_T > 30 GeV, ≥ 1 b-Tagged Jet with p_T > 20 GeV
 Non b-Tag : ≤ 1 jet with p_T > 30 GeV, No b-Tagged Jet with p_T > 20 GeV

Background suppression

- \circ Backgrounds : Z → ττ, Z → ee, µµ, QCD, W+Jets, ttbar, diboson.
- Taus, in signal, are produced with large p_T. Thus neutrinos produced in the tau decay are collinear with the visible products.
- Requiring E_T^{miss} to point in the direction of visible decay products suppress W+jets and top backgrounds.

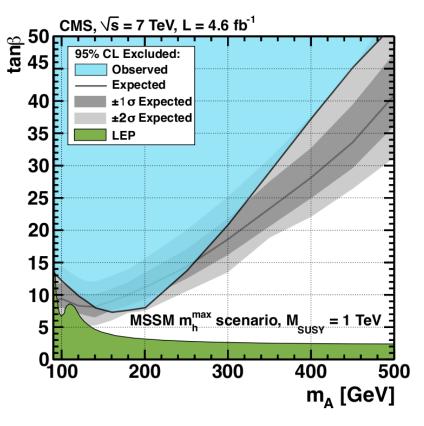

- Z→ττ: Use observed Z→μμ sample and replace muon by simulated tau ("embedding"). Normalized to the measured Z→μμ cross section.
- QCD : Estimated from SS/OS data.
- > W+jets : Shape from MC and normalization from P_{ζ} sideband.
- Top pair : Taken from MC and normalized to CMS measured cross section.
- > Di-boson : Taken from MC (negligible)

di-Tau mass reconstruction

- > Mass of τ Lepton pair reconstructed via Likelihood technique, based on:
 - τ decay Kinematics
 - Compatibility of reconstructed E_T^{miss} with Neutrino hypotheses
- > $m_{\tau\tau}$ Resolution ~20% (almost Gaussian)

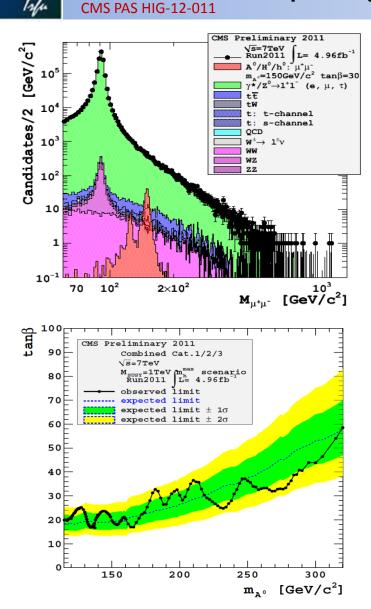
Distribution observed in Data in agreement with background expectation

$\phi \rightarrow \tau \tau$ Exclusion Limit



Limit obtained by scanning tanβ for each mass hypothesis M_A: Cross-section × BR for gg → φ and bb → φ computed as function of

 M_A , tan(β)


Dependence of M_h and M_H on tanβ taken into account

arXiv:1202.4083

$\phi \rightarrow \mu \mu$ Search

Small Branching ratio (few times 10⁻⁴), However, Muons are reconstructed very efficiently in CMS and with very good Mass Resolution (almost comparable to Higgs width)

Event Selection

Single Muon trigger 2 Muons $P_T 1st > 30 \text{ GeV } P_T 2nd > 20 \text{ GeV}$ $|\eta| < 2.1$, isolated

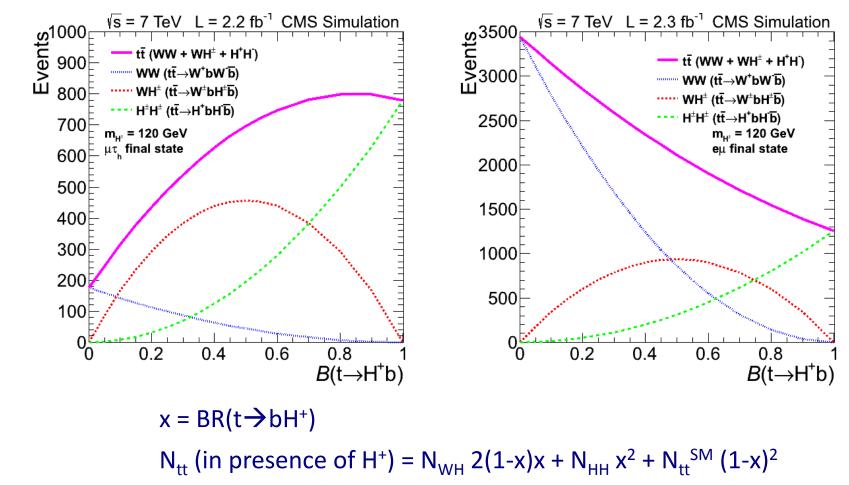
Opposite Charge Muon Pair Suppression of tt Background E_T^{miss} < 30 GeV

Selected Events analyzed in 3 Categories: b-Tag, 3rd Muon and neither

Observed diMuon mass spectrum is well in agreement with background expectations.

H⁺ Event Selection

		τ_{had} +Jets	e/μ + τ_{had}	e+µ
\triangleright	Trigger			
		τ_{had} +E _T ^{miss}	Electron+2 Jets+missing H _T / single Muon	Electron+Muon
\succ	Lepton Selection	า		
		$P_T^{\tau} > 40 \text{ GeV}$	P _T ^e > 35 GeV	$P_{T}^{e} > 20 \text{ GeV}$
		tight Tau Id.	$P_{T}^{\mu} > 30 \text{ GeV}$	P _T ^μ > 20 GeV
			isolated	isolated
			$P_T^{\tau} > 20 \text{ GeV}$	
\succ	Jets			
		3 Jets	2 Jets	2 Jets
		of $P_T > 30 \text{ GeV}$	of P _T > 35 (30) GeV	of $P_T > 20 \text{ GeV}$
		1 b-tagged	1 b-tagged	
\succ	E _T ^{miss}			
		> 50 GeV	> 45 GeV for $e+\tau_{had}$	
		$\Delta \phi(\tau_{had}, E_{T}^{miss}) < 160^{\circ}$	> 40 GeV for μ + τ_{had}	


- Opposite Charge Lepton Pair
- Veto Events with additional isolated Electrons or Muons

Major backgrounds have been estimated from data

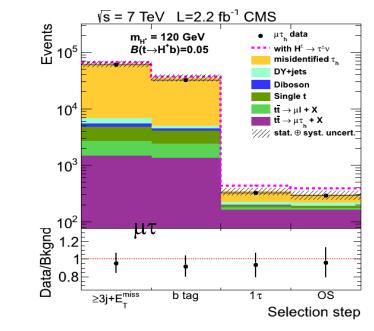
H⁺ signal interpretation

Excess (deficit) of events expected in the channels with hadronic (leptonic) tau decay

Isla

BSM Higgs @ CMS, A. Nayak

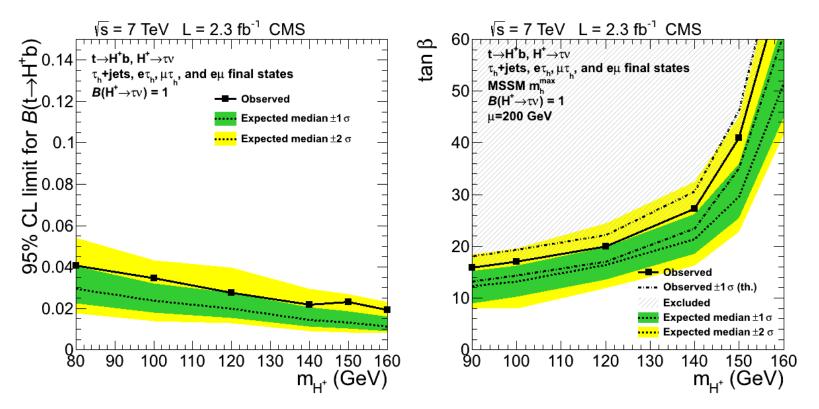
H⁺ Signal Extraction



The signal is defined as the excess of ttbar event yields in presence of H⁺

 $N_{excess} = N_{tt}^{MSSM} - N_{tt}^{SM} = N_{WH} 2(1-x)x + N_{HH} x^2 + N_{tt}^{SM} ((1-x)^2 - 1),$ $x = BR(t \rightarrow H^+b)$

No Excess of events observed. Data is agrees well with SM backgrounds Major backgrounds are estimated from data.

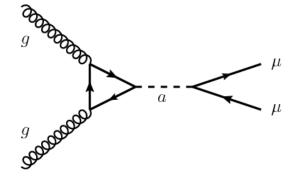


BSM Higgs @ CMS, A. Nayak

arXiv:1205.5736

Upper limit on BR(t \rightarrow H⁺b) excludes region of large tan β in MSSM Parameter space for M_{H+} / M_A \leq M_{top}

NMSSM: $a_1 \rightarrow \mu^+ \mu^-$

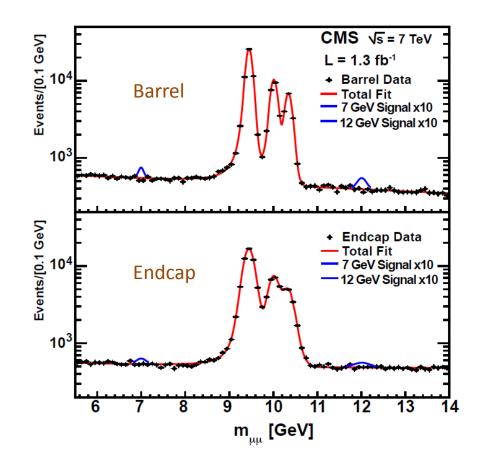

- Add a scalar singlet to MSSM Higgs family
 - 3 CP even (h1, h2, h3), 2 CP odd (a1, a2), and H*
 - One of the CP odd Higgs boson can be very light

 $a1 = a_{mssm} \cos\theta_A + a_s \sin\theta_A$ (superposition of MSSM CP odd doublet scalar And the additional CP odd singlet scalar)

- At CMS: search above and below the Upsilon family
 - Larger production rate relative to Tevatron
 - Extended search relative to BaBar.

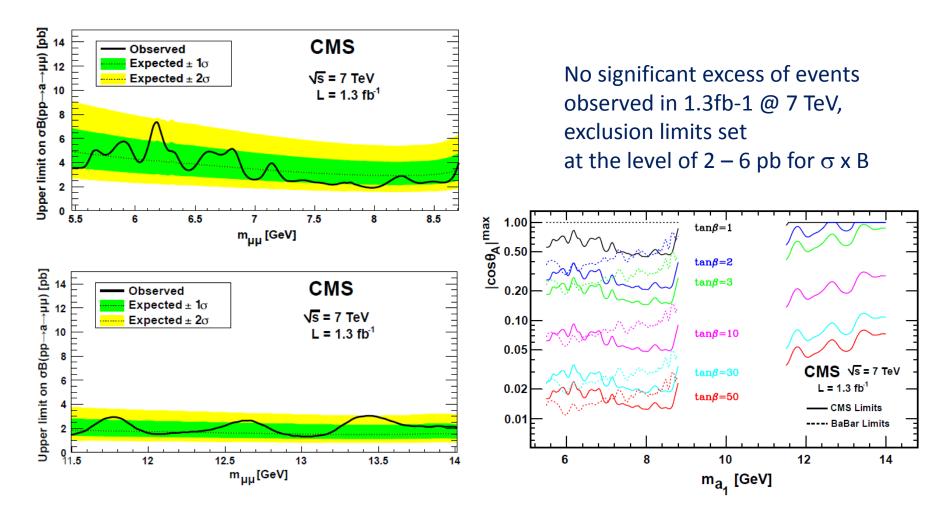
Event Selection

- Trigger (Prescaled) :
 - OS dimuon, $p_T^{\mu} > 3.5 \text{ GeV}$, $p_T^{\mu\mu} > 6.0 \text{ GeV}$
 - 5.5 < $m_{\mu\mu}$ < 14 GeV
 - Impact parameter compatible with prompt muon
- Offline Muon Selection : $p_T^{\mu} > 5.5$ GeV, $|\eta| < 2.4$, isolated


Search mass ranges 5.5-8.8 GeV and 11.5-14 GeV

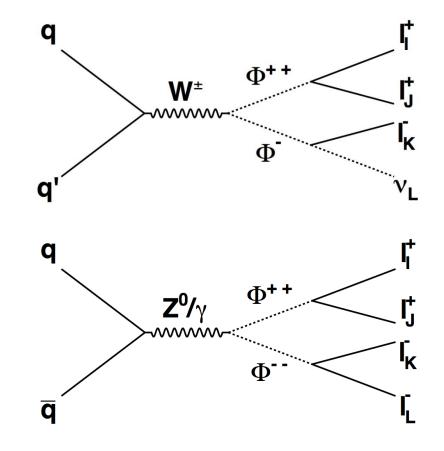
Search Strategy

- Signal extraction
 - Binned ML fit over 5.5 14 GeV
 - Mass scan in 30 MeV steps
- Background model
 - QCD: 1st-order polynomial
 - Y(NS): double crystal ball
- Signal model
 - Single Gaussian
 - Mean fixed to center of step
 - Width fixed to detector resolution (by fitting the inv. mass spectrum with two CB functions)
 - Barrel : 50 120 MeV
 - Endcap : 90 190 MeV



Exclusion Limits

arXiv:1206.6326



Doubly charged Higgs boson (Φ^{++})

- Standard model extension by a scalar triplet adding three new particles
 - $\Phi^{++}, \Phi^{+}, \Phi^{0}$ (e.g. Type-|| seesaw model)
- The triplet is responsible for neutrino masses, the couplings being directly linked to the mass matrix
 - M_{ij} = k Y_{ij}
- Unknown neutrino mass matrix
 → unknown branching ratios
- assume branching ratios to leptons only

 Φ^{++} and Φ^{+} are assumed

to be degenerate in mass

- Six standard searches covered, where BR(⊕⁺⁺→|⁺|⁺)=100%
- Four additional model dependent points to describe the neutrino sector

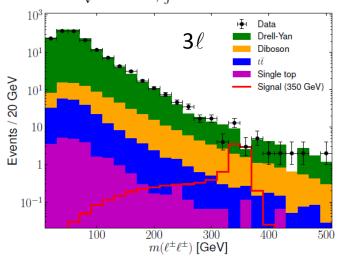
$\Phi^{ + +}$ analysis strategy

CMS

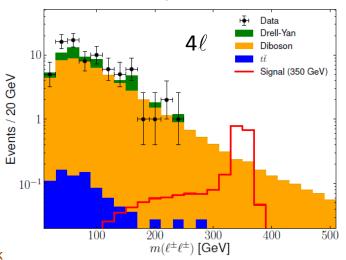
Signatures: **3 or 4 leptons** in the final state, dilepton made by same sign lepton

□ Selection strategy:

- dilepton triggers : 17/8 GeV for ee, eµ; varying for μμ
- lepton id and charge matching
- At least two leptons with pT > 20 / 10 GeV
- Loose isolation requirement
- Veto of low invariant mass resonances (< 12 GeV)
- Σp_T cuts on leptons (depend on m_{ϕ})
- tight isolation of leptons
- Z veto, E_T^{miss}
- cut on $\Delta \phi$ between leptons


Topological cuts on leptons depending on final states (3 OR 4 leptons) and m_{\u03c0}

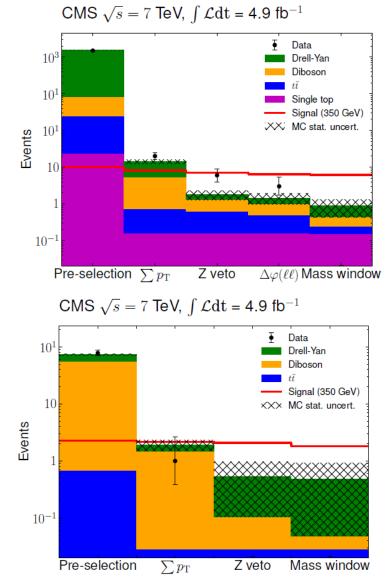
pre-


selection

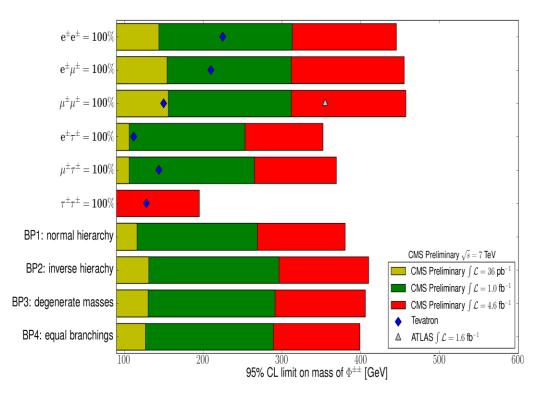
□ Events are counted in the mass window depending on the Higgs boson mass considered

Selections are optimized as a function of m_Φ separately for ℓℓ, ℓτ_h, and τ_hτ_h events, where ℓ = e, m

CMS $\sqrt{s} = 7$ TeV, $\int \mathcal{L} dt = 4.9$ fb⁻¹


CMS $\sqrt{s} = 7$ TeV, $\int \mathcal{L} dt =$ 4.9 fb $^{-1}$

23


Φ^{++} Exclusion Limits

arXiv:1207.2666

The best Limit ever

18/07/2012

BSM Higgs @ CMS, A. Nayak

Higgs in a SM with 4 Generations

25

- Reinterpret SM Higgs search in the context of 4th generation of fermions
- Large impact on production and decay rates
 - Gluon fusion enhanced up to ~ x10
 - Decay BFs modified significantly
- Use existing SM search results @ 7 TeV gg fusion dominates, neglect VBF and VH production
- □ Channels contributing:
 - $H \rightarrow \gamma \gamma$
 - $H \rightarrow \tau \tau$
 - $H \rightarrow WW(2|2v)$
 - $H \rightarrow ZZ(4l, 2l_2v, 2l_2q, 2l_2\tau)$
 - (W/Z)H, H→bb

– LHC XS WG benchmark:

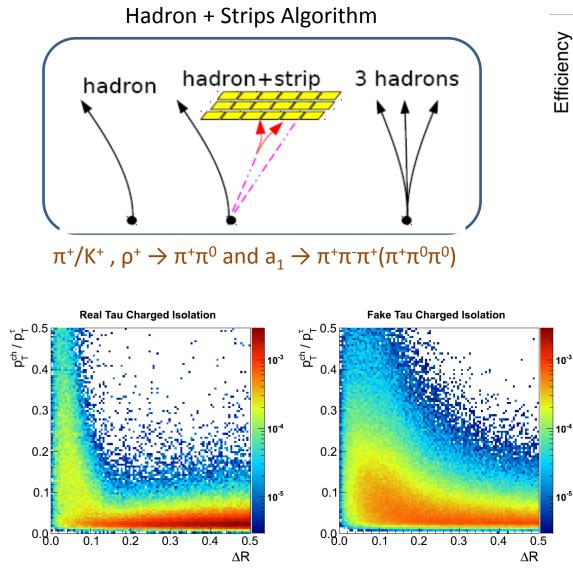
$$m_{d4} = m_{L4} = m_{oldsymbol{
u}} = 600 \; {
m GeV}$$

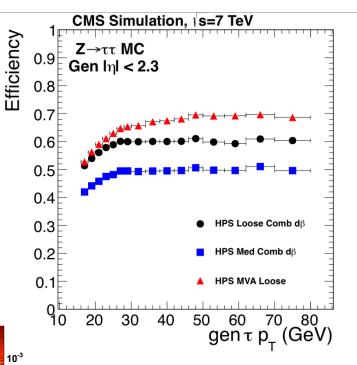
$$m_{u4} - m_{d4} = \left[1 + \frac{1}{5} \ln\left(\frac{m_H}{115}\right)\right] \cdot 50 \text{ GeV}$$

 $\frac{10}{10^{-2}}$ $\frac{10$

Summary

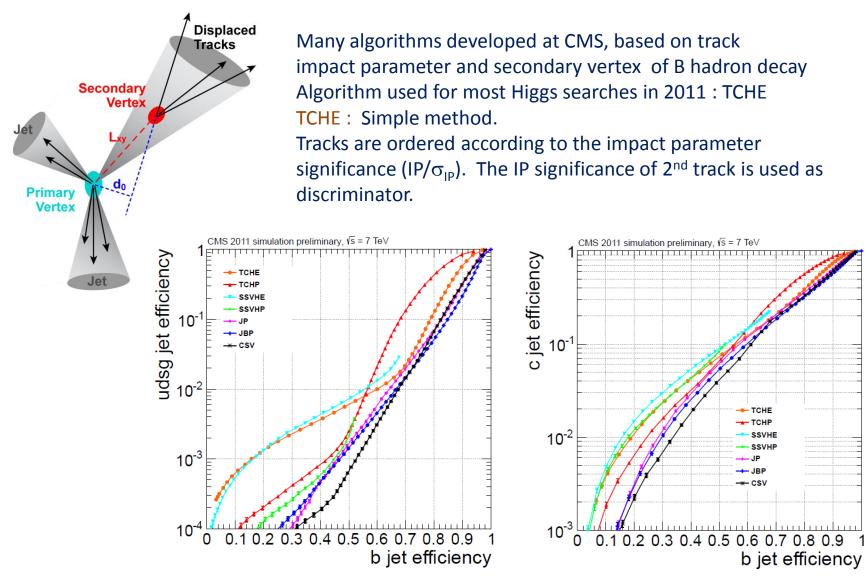
- CMS explored the search for Higgs boson in many promising models beyond SM.
- Most of the results presented today are from 7 TeV data.
- No evidence of any excess above backgrounds.
- Stringent limit set on the production of Higgs boson in most of the models beyond SM.
- More BSM Higgs search results from 2012 LHC runs are expected soon.





Tau Identification @ CMS

Ring-Based Isolation :


- Isolation pT summed infnf'R rings around tau
 - BDT trained against jet $\rightarrow \tau$ fakes

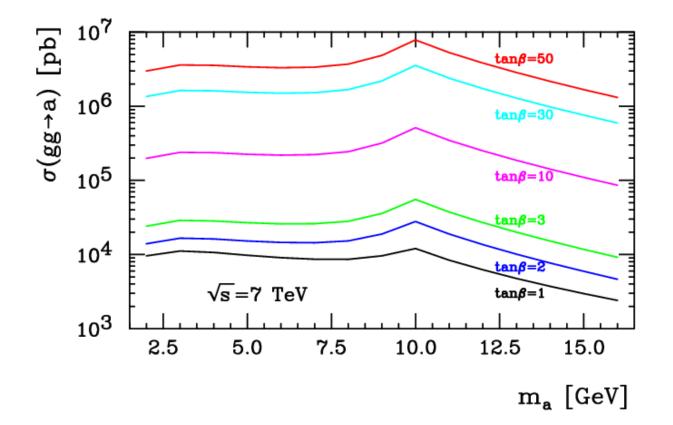
BSM Higgs @ CMS, A. Nayak

b-Jet Tagging

BSM Higgs @ CMS, A. Navak

TCHE тснр

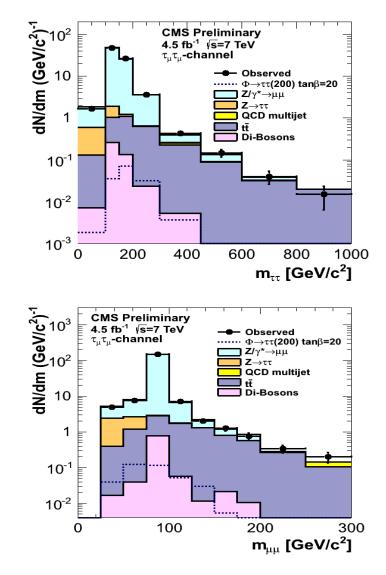
> SSVHE SSVHP


b jet efficiency

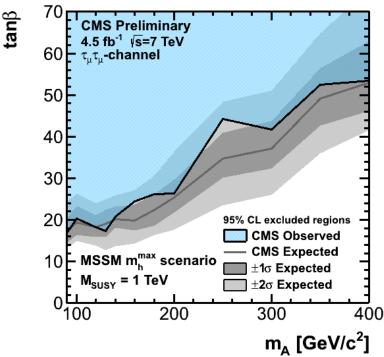
- JBP - csv

production of a₁

H⁺⁺ Benchmark Points


Table 1: Branching fractions of Φ^{++} at the four benchmark points.

Benchmark point	ee	еµ	eτ	μμ	μτ	ττ
BP1	0	0.01	0.01	0.30	0.38	0.30
BP2	1/2	0	0	1/8	1/4	1/8
BP3	1/3	0	0	1/3	0	1/3
BP4	1/6	1/6	1/6	1/6	1/6	1/6



$\phi \rightarrow \tau \tau \rightarrow \mu \mu$ Search

Analysis category similar as other $H \rightarrow \tau \tau$ channels : b-Tag & Non b-Tag Additional MVA (Likelihood) discriminant to suppress $Z/\gamma^* \rightarrow \mu\mu$ and $Z \rightarrow \tau \tau$ w.r.t. signal Signal extraction based on a binned likelihood function constructed from the 2D distribution of $(m_{\tau\tau}, m_{\mu\mu})$

BSM Higgs @ CMS, A. Nayak