Finding the Source of Electroweak Symmetry Breaking: Theoretical Summary

S. Dawson, BNL, July 31, 2010

What are the criteria?

- Electroweak symmetry breaking needs to explain:
 - Non-zero mass of W and Z gauge bosons
 - Non-zero mass of fermions
 - Unitarity at 1 TeV
- Must be consistent with all data
 - Precision electroweak data
 - Tevatron searches
 - Flavor changing neutral currents
 - Little hierarchy
 - Much possible physics required to be at >> TeV

Unitarity

- Massive W and Z's have longitudinal polarizations
- Longitudinal interactions spoil nice properties of gauge theories:
 - Loops are not finite without Higgs

Scattering amplitudes grow with energy

What unitarizes WW scattering?

- Symmetry breaking could be weakly coupled
 - SUSY, Higgs Portal (lots of singlets), Extra-D with multiple vector bosons.....

- Symmetry breaking could be strongly coupled
 - Technicolor, QCD like models, Higgsless, composite Higgs.....

The TeV Scale

- We expect the Higgs or unitarity restoring action to be around 1 TeV
- Symmetry breaking mechanism must:
 - Give mass to vector bosons
 - Not have massless Goldstone boson
 - Be part of a renormalizable quantum field theory
 - History: Zinn-Justin

Simplest possibility is weakly coupled Higgs boson

Allowed parameter space shrinking

Precision EW Data

- □ Prefer light (M_h < 158 GeV) SM Higgs
- Quality of fit is good—doesn't require new physics

Includes direct search limits

Not updated

[Hoecker]

Understanding Statistics....

- □2-sided confidence level of direct search limits from LEP & Tevatron
- □Log likelihood interpretation of experiments

Precision data restrict BSM scenarios

- ☐ General 2 Higgs doublet
- Kaluza Klein particles
- Little Higgs with T parity
- MSSM
- 4 generations

Can accommodate heavy Higgs with some types of new physics

Higgs at the LHC

Goal: Update with comparison of PDFs and reliable estimates of uncertainties

Higgs at the Tevatron

Do we need update of Tev4LHC plots?

Higgs Searches

Need reliable predictions for many channels

Many tools available

- □ gg→h
 - NNLO QCD +EW
 - Resummation (threshold)
- Vector Boson Fusion
 - NLO QCD + EW with decays, NNLO QCD
- □ Vh
 - NLO +EW, NNLO QCD
- □ tth
 - NLO
- NLO event generators
 - MC@NLO, POWHEG
- Decays
 - NLO QCD+EW

Plea to experimentalists: Help theorists make their tools useful!

SM calculations in great shape

□ Dominant production mode is gg→h

- NNLO in heavy M_{top} limit
- Exact t,b loops at NLO
- N³LL resummation
- EW and mixed EW/QCD corrections

Precise predictions needed for error estimates

gg→ h

□Fully differential NNLO rates

The issues:

How to chose central scale / scale variation?

How to combine PDF & scale uncertainties?

$$\sigma(M_h = 165 \, GeV)_{Tevatron} = 389.0 \, fb_{-11.7\%}^{+8.1\%} \, (scale)_{-12.0\%}^{13.6\%} \, (\alpha_s + PDF)$$

Small scale gives better convergence

How big is uncertainty on gg→h?

- □ Baglio & Djouadi uncertainty on gg→h: ~±38%
- Roughly 2x's Anastasiou uncertainty: mainly due to method of combining scale and PDF/ α_s uncertainty, along with larger variation of scale, $m_h/3 < \mu < 3m_h$

Tevatron assumes ±17.5% theory uncertainty on gg→h

Tevatron

PDF errors are complicated....

- Prescription for PDF errors:
 - Errors quoted by PDF fitters typically smaller than variations between sets
 - PDF4LHC: Use envelope of MSTW,CTEQ,NNPDF predictions
- Effectively amounts to doubling MSTW error

Differences not just α_s

Higgs Cross Section Working Group

- □ Attempt to clarify uncertainties on Higgs rates
- Total rates now; differential rates with cuts coming
- Working towards ATLAS/CMS combination

PDF4LHC recipe for NLO gg→h

Compare theory/experiment

- □Experiments separate Higgs rate into 0, 1, 2 jet bins
- ☐ Theory precision degrades from 0 to 1 to 2 jet bins

[Anastasiou]

$h \rightarrow \gamma \gamma$: Discovery channel for light Higgs

- Single γ production: experiment/theory differences seem to be sorted out
- Understanding double photon production necessary before Higgs discovery
 - Low γγ differences could be theory/experiment miscommunication about isolation cuts

Vector Boson Fusion

- Discovery channel
 - 2nd largest cross section over entire M_h range
- □ VBF: $h \rightarrow \tau^+\tau^-$ and $h \rightarrow$ WW useful for h couplings
- Probes new vector boson interactions

VBF with NLO QCD + EW

- □ Electroweak corrections to vector boson fusion are of similar size as QCD corrections (-4%, -7%)
- QCD contributions very sensitive to cuts
- Partial cancellation between EW & QCD

VBF at (partial) NNLO

- NNLO corrections in DIS approximation
 - Prediction for total rate under excellent control

Scale uncertainty ~ PDF uncertainty ~ 2%

Interface with NLO Monte Carlos

- ☐ Only 2 NLO MCs: POWHEG & MC@NLO
 - Hardest jet with LO accuracy, other jets generated by shower in collinear/soft approximations
- MC@NLO tied to HERWIG
- POWHEG
 - Can switch shower models
 - No issues with incomplete cancellations of higher order effects
 - Automation: new processes should be faster

gg→h in MC@NLO & POWHEG

- □ Harder p_T spectrum in POWHEG than MC@NLO
 - (large) K factor multiplies all p_T in POWHEG, not in MC@NLO
- Dip in MC@NLO understood
 - Incomplete cancellation (NNLO effect)

VBF in **POWHEG**

- □ 3rd jet generated by shower
 - Not accurate in central region as needed for p_T veto
- □ As p_T veto gets smaller, shower/hadronization as important as NLO scale variation

Step 2: Extract parameters

Measure couplings to fermions & gauge bosons

$$\frac{\Gamma(h \to b\overline{b})}{\Gamma(h \to \tau^+ \tau^-)} \approx 3 \frac{m_b^2}{m_\tau^2}$$

Measure spin/parity

$$J^{PC} = 0^{++}$$

■ Measure self interactions

$$V = \frac{M_h^2}{2}h^2 + \frac{M_h^2}{2v}h^3 + \frac{M_h^2}{8v^2}h^4$$

Need good ideas here!

CP Higgs Studies

- Study CP of spin-0 particle in model independent way
- Simple observables sensitive to spin
 - Differential width for h→ZZ→4f
 - Depending on parameters need~100 fb⁻¹

Determining Spin/Parity

- □ Suppose we find a resonance $X \rightarrow ZZ \rightarrow I^+I^-I^+I^-$
 - What is it?
- Helicity amplitudes with most general ZZX couplings for X= spin 0,1,2
- □ Amplitude depends on 5 angular variables
- Can distinguish between various spin parity assumptions with small number of events
 - Monte Carlo simulation of signal/background with detector effects
 - For M_h=250 GeV and 30 signal events (corresponds to 5 fb⁻¹ for SM rate), have 4σ discrimination between 0+ and 0-

Is the Higgs a Scalar?

■ VBF sensitive to HVV tensor structure

$$T^{\,\mu\nu} = c_1 g^{\,\mu\nu} + c_2 \Big(p_1 \cdot p_2 g^{\,\mu\nu} - p_1^{\,\mu} p_2^{\,\nu} \Big) + c_3 \varepsilon^{\,\mu\nu\alpha\beta} \, p_{1\alpha} \, p_{2\beta}$$
 SM CP even CP odd

Azimuthal angle between tagging jets

Higgs couplings from VBF

- Signal: VBF, h→ττ
- Idea: vary central jet veto scale to extract gg and VBF separately

Large theoretical uncertainty in normalization & shape of gg rate

60 fb⁻¹ gives ~ 30% measurement of VBF couplings

Jet Substructure

- At LHC energy, electroweak scale physics (W,Z,h,t) inside jets
 - Distinguish between QCD generated jets and those due to heavy object decays
 - Algorithms for unclustering jets
 - Apply technique to Wh, Zh, h→bb
 - ☐ Important to get y_b
 - Require h & V have high p_T (>200 GeV)
 - Decay products collimated, subjet techniques useful

Subjets and Vh, h→bb

Butterworth, Davison, Rubin, Salam

 $3.5 \, \sigma$, $30 \, fb^{-1}$, $14 \, TeV$

Many alternatives to SM

- MSSM
 - A favorite
 - Still a lot of work to do to have reliable predictions
- Multi-Higgs
 - NMSSM has 1 extra chiral superfield
- Higgsless
- □ Composite Higgs
- ☐ TBD....

Requires > 100 fb⁻¹

MSSM

- □ 5 Higgs bosons. h, H, A, H[±]
- Rates affected by change in couplings
 - For tan $\beta > 10$, largest rate is bb ϕ at LHC
 - Need NLO generator for bb\(\phi\)
 - h decays 90% to bb, 10% to τ+τ-

MSSM & Tevatron Limits

□ bb $\rightarrow \phi \rightarrow \tau^+ \tau^+$ (NNLO QCD)

- MSSM corrections included using \(\Delta m_b \) approximation
- Resums large effects to get effective $g_{hbb} = \frac{m_b}{v_{SM}(1+\Delta_b)} \left(-\frac{s_\alpha}{c_\beta}\right) \left(1 \frac{\Delta m_b}{t_b t_\alpha}\right)$
- Accurate to < 1%</p>
- - bbø vertex corrections included in ∆mb approximation
 - Remaining squark/gluon loop contributions neglected in limits
 - \square O(±20%) for m_{SUSY}~500 GeV

MSSM Higgs production rates

- □ Squark/gluino loops important for gg→φ
 - Rate significantly reduced

SQCD corrections (relative to LO b loop)

NMSSM

- Add gauge singlet superfield
 - Rich phenomenology: 3 neutral Higgs, 2 pseudoscalars, 5 neutralinos
- Severely limited by ALEPH/B physics/Tevatron Higgs limits
 - Some regions allowed where lightest neutralino can be dark matter
 - New signature: h→aa

Conclusions

- Thanks to the organizers!
 - Theory/experimental dialog critical
 - Theory calculations for Higgs signal under excellent control for SM
 - Still need work on theoretical uncertainties on background
 - Need to come to consensus about treatment of theoretical uncertainties
 - Higgs cross section working group can do this!
 - BSM scenarios need more work