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e
Sampling the BOLD response with

functional MRI

He nodynamic response
=temp. variation of [oxy-Hg]
4

L=

|
| rlli 2s
stimulus

(EPI:
80 slices, TR=2000 ms, TE=30ms,
voxel=2x2x2mm
Anat :
TR=1600ms, FOV=256x256mm?2,
voxel=1x1x1mm, 192 slices
\Slice thickness 1mm
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-
BOLD Imaging in humans

« BOLD fMRI has been used
Intensively to map cognitive
functions in the human brain.

e Segregation principle
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Even while the brain is “resting”
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fMRI data from acquisition to analysis

Complex
metabolic
pathway

Block design matrix
face experiment
T T
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FMRI data classification

 Given xin R’, (fMRI volume with p
voxels), predict a label y in {-1, 1}
l.e. | or

or better the class probability
Proba(y = 1|x)

« Use of logistic regression: learn the
weight w and bias b such that

b) = argming, , Z log (1 + exp (—o(z;)(y;w +b)))

1=1

 With reqgularization

(W,b) = argmin, , »  log (1 + exp (—(z,) (y;W +b))) + Al|wl|3
1=1
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Decoding visual categories

face

Visual categories very well house
discriminated indivudally S

cat
scissors

scrambledpix

bottle
W P, 4 . i @

L&&ﬁ ﬁmmfﬁf

[Haxby et al. Science 2001] A
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fMRI meta-analyses

e Coordinate based meta-analyses

e Activation peaks coordinates summarizing studies
 More functional specificity, less spatial information per study

Map Studies Help

Coordinates: [-30, -92, O]
Z-score : 6.61

neurosynth.org
[Yarkoni et al., 2011]
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fMRI meta-analyses

* Image based meta-analyses

« Use the actual statistical images

More spatial information per study
[Salimi-Khorshidi et al., 2009]

e Less datasets
Less functional specificity

NeuroVault

A public repository of brain activation maps

.:.' Y "-
55” g:OpellfI\/IRI » |
[ What is it? Why use it? Get started
A place where researchers + Ini eracwewsuauzanon
can publicly store and share A permanent URL
activation maps produced by = Publicly sl h eable

https ://o pe nfm r-i . O rg/ functional MRI studies. = Improves meta-analyses

Latest images

Component 2 resized preview ©
view ©
view ©
view ©
view ©

5
T B B E
¢ @ 3 a

http://neurovault.org/
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http://brainomics.cea.fr/localizer
https://openfmri.org/
http://neurovault.org/

Image database

e Datasets
e OpenfMRI (18 studies) -?:-’Openﬂ\/l RT
« Neurospin (10 studies) K

- Functional localizers, Language & music structure
Arithmetic & saccades Language temporal bottleneck

. HCP

[ Al
2 [ Same label
= ] Same study
@ 3 1 Same contrast
e
Z.
studies subjects images

Distance between two maps
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e
Forward inference

? CAR What is the

brain response
6]_ common to these
+* stimuli?

Which regions are recruited by tasks containing a given term?

 General Linear Model (GLM) for terms effects

>
X  Conditions images 23223
Y Design matrix sentences I N
X = Y ﬁ + € J calculation . . .
[3 Terms effect tone listening .
tone counting . .
€ ErrOr successful stop ..
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visual
auditory
digits
face
patterns
scramble
saccades

none

button press

count
inhibit

discriminate

Correlation of the design matrix: difficulties from
the heavily correlated terms (database bias)

June 30", 2014
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Forward inference
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Results
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Results
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Re\(erse Inference

A8 % " R

? |
What is
this brain doing?

Which regions are predictive of tasks containing a given term?

« Multilabel classification problem
 more than one class may be associated with each sample

* Predict the CogPO terms

mmmmm

sentences . .

vi:; & ':,f: i = calculation

§LJg Data: experimental ey I W rget
\r '11:‘ cond |t|0n I mag es tone counting - .
N successful stop ..
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e
Reverse inference

Which regions are predictive of tasks containing a given term?

 Model detalls

* One-vs-all approach with an /2 penalized logistic regression
« Features selection: hierarchical clustering (Ward) & ANOVA.
* Cross validation
 Leave-one study out, leave-one lab out
* Predict unseen conditions
* Problems

« Class distribution (imbalance & covariate shift)
* Long tailed distribution of terms
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Precision:

does not
label as
positive a
sample
that is
negative
Recall:
finds all
the
positive
samples

precision

I I T
avg. best: 0.689
avg. worst: 0.576

T T I
avg. best: 0.304
avg. worst: 0.169

avg. best: 0.095
avg. worst: 0.009

recall

[Schwartz et al. NIPS 2013]
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Tems
digits
face

|
|
mmmm  patterns
|
|

sounds
shapes
== \ords

<amble| - Explicit stimulus Stimulus modality | s

Forward vs. Reverse

Tems

== juditory

x=44

Forward

Reverse

Less specific but more accurate Less accurate but more specific
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[Schwartz et al. NIPS 2013]
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-
Unsupervised Setting

 Goal: build a brain atlas that represents the contrasts in a
database

e Sets of regions with given functional features
e Technical issues:

* Inter-subject variability: both in spatial definition and
functional characteristics

« How to measure model quality ? Perform model selection ?
e Tractability

June 30", 2014 CDS Kick-off 20




Functional segregation = sparse coding

voxels

X

NETE
| —

-
2.
4
(0
2
4
O
0

| I
cognitive
loadings

argmln HX DATH2+)\HAH1
D.A, Q(D)

Similar to learning contrasts + maps — closely related to ICA or clustering
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-
Learning problem

Optimization

D = argmin me(‘mt DaIHi—FAHale)

D, Q(D)<1

D Is essentially a sample mean — stochastic gradient descent
On a small number of x : LARS to learn a

Projected gradient descent for D.
Structured norm: - Q(f;) = max (||f;C|3, u|[£:C L ||3)

weighted /5., in {C, C | } basis

Parameter setting A oc —-std X
= ek =80
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Dataset — and variability
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-
Discussion — work In progress

» Better penalties (smoothness, total variation)
* Not yet compatible with online learning
e Extension to multiple datasets:
e Use of summary statistics for speed-up
 Model selection — if doable ?
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Data analysis tools

* Machine learning for neuroimaging http://nilearn.github.io
o Scikit-learn-like API
« BSD, Python, OSS

« Classification of neuroimaging data (decoding)
« Functional connectivity analysis
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http://nilearn.github.io/
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