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Big scientific questions

• Geologic evolution (tectonic, volcanic, ...)

• Climate evolution (climate change, escape, ...)

• Habitability (origin of life, human exploration)



Big scientific questions

• Geologic evolution (tectonic, volcanic, ...)

• Climate evolution (climate change, escape, ...)

• Habitability (origin of life, human exploration)

? ?



Raw data

• Mars Express (ESA, launched in 2003) : ~50 Tb

• Mars Reconnaissance Orbiter (NASA, launched in 
2005) : ~200 Tb

Calibrated data

• Increase factor : ~10



Huge amount of data

• How to treat the data ? 

• How to represent the scientific results 
(in a global map) ?

Franquin, Gaston Lagaffe



Large volume products

• High resolution spectra

• High resolution images

• Hyperpectral images

• Multi-angular hyperspectral images
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Imaging techniques

• Usual Camera

• Pushbroom system

• up to 20 000 pixels

spacecraft 
motion



Examples of high resolution 
images datasets

• MOC (Mars Global Surveyor, NASA) 

• HRSC (Mars Express, ESA)

• ISS (Cassini, NASA)

• HiRISE (Mars Reconnaissance Orbiter, NASA)

• ...

Neukum et al., 2004

Malin and Edgett, 2000

Porco et al., 2004

McEwen et al., 2007



Tools for large dataset treatment:

1. global scale mosaic visualisation

2. stereoscopy to create DEM

3. change detection (crater, dust devils, dune, ...)

4. automatic feature identification

Data Science Challenges 
for images



1. Scientific data visualisation

• Google Mars

• MapAPlanet

• JMars,...

• Limitations:

• no scientific data

• not complete

• Slow

http://jmars.asu.edu/

http://www.mapaplanet.org/

http://www.google.com/mars/

http://jmars.asu.edu
http://jmars.asu.edu
http://www.mapaplanet.org
http://www.mapaplanet.org
http://www.google.com/mars/
http://www.google.com/mars/


1. Data visualisation project

• Web based 
approach

• 3D and GIS 
oriented

• C. Marmo 
(GEOPS/IAS/
OSUPS)



2. Digital Elevation Model

• Stereoscopy

• based on image correlation

• Limitations:

• Very slow

• Uncertainties ?



3. Change detection

• HiRISE 
(august 2011)

• Flow

• Summer 
(~30°S)

• Liquid water ?

McEwen et al., 2011



3. Change detection
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4. Feature detection

• Automatic crater 
counting 

• on images

• on DEM

• Limitations:

• very slow

• accuracy

Stepinski et al., 2009

Author's personal copy

Fig. 3. Craters identified by the AutoCrat system in the Terra Cimmeria 1 site (top left), the Terra Cimmeria 2 site (bottom left), the Terra Cimmeria 3 site (top right), and the
Terra Cimmeria 4 site (bottom right). The background shows the topography; high-to-low areas are depicted by dark-to-light grays.

Fig. 4. Craters identified by the AutoCrat system in the Hesperia Planum site (left) and the Sinai Planum site (right). The background shows the topography; high-to-low areas
are depicted by dark-to-light grays.

Fig. 5. Craters identified by the AutoCrat system in the Amazonis Planitia site (left) and the Olympica Fossae site (right). The background shows the topography; high-to-low
areas are depicted by dark-to-light grays.

82 T.F. Stepinski et al. / Icarus 203 (2009) 77–87

Urbach et al., 2009



Data Science Challenges 
for images

• Data treatment (DEM)

• Data mining (change detection, feature identification)

• How to represent the data (global map, time) ?



Large volume products

• High resolution spectra

• High resolution images

•Hyperpectral images

• Multi-angular hyperspectral images



Contribution:
•atmosphere
•surface

Visible and Near-IR signal
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Imaging spectrometer

• Hyperspectral image

• Maps surface/atmosphere properties
> 100 wavelengths

CO2

H2O



Examples of 
hyperspectral datasets

• OMEGA (Mars Express, ESA)

• VIRTIS (Venus Express, ESA)

• VIMS (Cassini, NASA)

• CRISM (Mars Reconnaissance Orbiter, NASA)

• ...

Bibring et al., 2004

Drossart et al., 2007

Brown et al., 2004

Murchie et al., 2007



• Detection

• band ratios, wavelets, linear unmixing

• Quantification

• radiative transfer inversion

Data Science Challenges
for hyperspectral images
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Detection using Band ratio

• Very Fast

• Limitations:

• superposition of bands

• angular effects

role in spectral analysis, briefly describe the CRISM and
OMEGA data sets, discuss the methodology and results of
the summary product validation process, and conclude with
a summary and review the limitations associated with these
data products.

2. Spectral Parameters
2.1. Background

[5] The idea of utilizing parameters to analyze spectral
data has been used with success in past analyses of spectral
data from Mars [e.g., Bell et al., 2000;Murchie et al., 2000].
The concept rests on the idea that a given spectral feature
can be captured by a single parameter value, which is
calculated by applying an algorithm using combinations
of spectral bands to the data. Each parameter is designed
with a specific rationale in mind; ideally, to capture spectral
features unique to a specific mineralogy. Typically the
parameter value is then mapped across a region to
assess spatial variations of the spectral feature, which, in
turn, are interpreted as spatial variations of the associated
mineralogy.
[6] The CRISM summary products will be derived from

reflectances in key wavelengths and will make use of many
parameters used in previous studies such as single band
reflectances, reflectance ratios, spectral slope, and depths of
mineralogic or gaseous absorptions. In this work, reflec-
tance is represented by the symbol R. Surface parameters
will be derived from reflectances that have undergone
photometric, thermal, and atmospheric corrections; atmo-
spheric parameters will be derived from reflectances under-

going only a simple photometric correction to normalize
observations to a standard viewing geometry.
[7] Figure 1 demonstrates examples of some of the most

common spectral parameters, including those mentioned
above. In Figure 1, the reflectance at the wavelength
indicated by the point labeled 1 (i.e., at l1) is represented
as R1. Spectral slope refers to the slope of the spectral
continuum (the general shape of a spectrum in the absence
of specific absorptions) and is represented as the change
in reflectance over a given wavelength interval. The
general representation of spectral slope is DR/Dl; in the
example spectrum of Figure 1, the spectral slope is found
by (R1 ! R2)/(l1 ! l2). For absorptions, the depth of
the absorption, or band depth, is generally represented as
1 ! Rl/R*l, where Rl is the reflectance at the wavelength
of the center of the absorption, and R*l is the interpolated
continuum reflectance at the same wavelength. The
continuum level is created from a linear fit between two
wavelengths from either side of the absorption that are at least
local continuum levels. Using the difference of this ratio
from 1 is a favored convention because it results in larger
band depths for deeper absorptions. In the Figure 1 example,
the band depth is 1 ! RC/RC*, where RC is the reflectance at
the center of the band, and RC* is derived from the continuum
fit across the band and is equal to (a*RS + b*RL), where a =
1 ! b and b = (lC ! lS)/(lL ! lS). Generally, band depth
scales with the abundance of the absorbing mineral, though
compounding factors such as particle size and albedo also
have an effect [Clark and Roush, 1984].

2.2. CRISM Spectral Parameters

[8] The spectral parameters that will be used with the
CRISM data are designed specifically for the CRISM
wavelength regime. On the basis of a priori expectations
of the composition of Mars, we began with a set of
35 parameters that primarily focused on broad mafic
features expected in surface spectra and narrow hydration
features expected in spectra from both the surface and the
atmosphere. We then tested and evaluated these initial
parameters using OMEGA data.
[9] Detailed analysis revealed that much of the spectral

diversity of Mars was captured by a number of the original
parameters but also that several parameters failed to show
relevant variations as anticipated, and that some features
identified with the full OMEGA spectral resolution were not
captured at all (e.g., the sulfates and phyllosilicates reported
by Bibring et al. [2005], Gendrin et al. [2005], and
Langevin et al. [2005b]). Thus parameter formulations were
reworked; some parameters were eliminated, and new
parameters were added. Table 1 represents the CRISM
summary products as defined at the time of publication,
along with their formulations and rationale, refined accord-
ing to the results of our validation efforts and the OMEGA
mission itself. The outcome is a robust set of parameters
capable of capturing the known atmospheric constituents
and diverse surface mineralogy of Mars, as well as inter-
esting atmospheric constituents and mineralogy yet to be
detected at the planet.
[10] As the parameters in Table 1 are derived from

multispectral data, the level of discrimination is limited.
Most parameters have been designed to identify mineral
classes rather than mineralogic species. There are 33 param-

Figure 1. An explanation of some of the most common
spectral parameters using an idealized spectrum. The solid
line is an idealized spectrum with an absorption band
superimposed on a sloped continuum. In the above
example, the reflectance at the wavelength indicated by
the point labeled 1 (i.e., at l1) is represented as R1. Spectral
slope is found by (R1 ! R2)/(l1 ! l2). Band depth is found
by 1 ! RC/RC*, where the point labeled C indicates the
center of the absorption at lC, RC is the reflectance at that
wavelength, and RC* is derived from the continuum fit
along the dashed line and is equal to (a*RS + b*RL), where
a = 1-b and b = (lC ! lS)/(lL ! lS).
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Absorption depth

very small, and they might be nanocrystalline
red hematite a-Fe203 or possibly maghemite
g-Fe203. Such small particles would be easily
transported, stick on most grains, and account
for the magnetic properties of the soil measured
by the MERs (16). Ferric oxides are also de-
tected in localized areas with a variety of
albedo (such as within Terra Meridiani, Valles
Marineris, or Aram Chaos).

Two types of hydrated minerals have been
identified from OMEGA data: phyllosilicates
(10, 17) (Fig. 2B) and sulfates (10, 18–20) (Fig.
2C), but in only a few locations (17) (Fig. 3).
Carbonate-rich areas have not been found by
OMEGA, although a low concentration of car-
bonate is interpreted from TES data on martian
dust (21), and carbonates are recognized in
martian meteorites (22).

From their near-IR (0.8 to 2.6 mm) spectra,
we infer that most of the phyllosilicate minerals
are Fe-rich (such as chamosite and nontronite),
although Al-rich phyllosilicates (such as mont-
morillonite) are locally dominant (17). These
clayminerals are found in a variety of light-toned
outcrops and scarps, primarily in rocks and soils
north of the Hesperian-aged Syrtis Major volcan-
ic plateau, Nili Fossae, and the Marwth Vallis
regions. In all these regions, phyllosilicates are
mapped associated with ancient Noachian-aged
surfaces. For example, in Nili Fossae, thin
Noachian-aged but unaltered mafic units rest
directly on phyllosilicate-bearing outcrops. Infor-
mation from the Mars Express HRSC, the MGS
MOC, and the Odyssey THEMIS images clearly
indicates that the phyllosilicates are in rocks
buried by more recent deposits; the hydrated
silicate-bearing bedrock has been exposed

through erosion. The surface material of Noachi-
an terrains, which are identified as being heavily
cratered, does not necessarily all date from the
Noachian times. Rocks of Noachian age are
exposed in spots because of impact, faulting, or
erosion.

In the Syrtis Major and Nili Fossae regions,
phyllosilicate-rich rocks are detected in both
ancient craters and material recently excavated
from ancient terrains beneath a later volcanic
cover. These relations demonstrate that these
impacts did not dehydrate the minerals. In con-
trast, no hydrated minerals are detected in the
lobate craters (thought to form by impact into
volatile-rich substrates) within the lava flows
from Nili Patera, which embay the ancient
terrains (10). This relation suggests that miner-
alization of hydrated minerals occurred before
the emplacement of the Hesperian-aged lavas
from Nili Patera and that these lavas are
essentially water-free. In the Marwth Vallis re-
gion (Fig. 4), hydrated minerals are not found
in the channel nor in its opening but rather on
the surrounding plateau and its eroded flanks.
Thus, water associated with the formation of
the channel did not lead to phyllosilicate for-
mation, although this outflow was sufficient to
produce severe erosion, including exposing the
ancient clay-rich minerals. So far, none of the
major and minor outflow channels or the valley
networks show evidence of hydrated minerals.

Sulfates, including Mg sulfates (such as
kieserite) and Ca sulfates (such as gypsum), con-
stitute the second major class of hydrated min-
erals mapped by OMEGA and detected by the
NASA rovers (7). OMEGA has shown that the
sulfate-rich areas are not restricted to the gray

hematite-rich regions detected by the MGS
TES (2, 5, 6). We have detected three principal
types of hydrated sulfate deposits: layered de-
posits within Valles Marineris, extended deposits
exposed from beneath younger units as in Terra
Meridiani, and the dark dunes of the northern
polar cap (10, 18–20).

Sequential mineral formation. Environ-
ments conducive to clay mineral formation
may have existed at or near the surface or in
the deeper subsurface. Surface or near-surface
conditions would not require high-temperature
conditions (hydrothermal, for example). Sur-
face formation of these clay minerals would
indicate a long-lasting wet episode, with large
surface aqueous reservoirs and alkaline water
resulting from this chemical alteration, oc-
curring during the Noachian.

Clay minerals could also have been formed
primarily in the subsurface, by one of the three
following processes: hydrothermal activity (23);
cratering, supplying subsurface water (liquid
and/or ice) to the impacted minerals (24); or dur-
ing the cooling of the mantle, if not thoroughly
depleted of volatile compounds. These deep
scenarios would not require a warm Mars to
have existed over extended time scales, and
they could have taken place even if Mars never
sustained a dense atmosphere. In addition, the
formation of clay minerals could have con-
tinued at greater depths long after conditions at
the surface became unfavorable.

Sulfate mineral formation requires substan-
tial quantities of water to account for the broad
distribution of minerals seen by OMEGA. Be-
cause sulfate precipitation requireswater to evap-
orate, it is essentially a surface process. For at

Fig. 1. Global maps
of pyroxene (top) and
anhydrous nanophase
ferric oxides (bot-
tom), exhibiting the
anticorrelation be-
tween surface mafics
and altered minerals
(in the form of ferric
oxides). The cratered
crust with large pyrox-
ene content (top, yel-
low to red) is not
covered with altered
minerals (bottom, blue
to green). Conversely,
the large areas with no
mafics (top, blue) cor-
respond to the higher
concentration of ferric
oxides (bottom, red to
white).

RESEARCH ARTICLES
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Pyroxene global map

Bibring et al., 2006

Bibring et al., 2006
Pelkey et al., 2007
Carter et al., 2014



• WAVANGLET

• correlation in a wavelet 
coefficient subspace

• Fast and efficient to remove 
angular effect

• Limitations:

• ~10 endmembers

Detection using Wavelets

Schmidt et al., Icarus 2009

Schmidt et al., IEEE TGRS 2007

SCHMIDT et al.: WAVANGLET: AN EFFICIENT SUPERVISED CLASSIFIER 1379

compound in the image, regardless of its physical properties,
and and must minimize false detections.

As the SA calculation is invariant with any linear ortho-
normal transformation, such as the Daubechies WT, we have
the choice to perform the SA mapping of all the pixels in the
filtered wavelet base or in the filtered spectral space. The latter
is reconstructed by the inverse transform of the filtered wavelet
base. The calculation of the SA is faster in the filtered wavelet
base than in the complete spectral space because the dimensions
of the former are lower. We therefore choose to perform the
calculation in the filtered wavelet base.

D. Step D: Automatic Mass Classification With SAs in
This Subspace

All the parameters are now adjusted to perform the auto-
mated classification. For each image and each spectrum of the
reference base, a detection mask will be created. For datasets
spanning a long time range (several months to years), many pa-
rameters can vary. For instance, the bad channel list can change
with time thus affecting Steps B2 and B3. If this happens, then
Step C should be adapted according to the former steps.

IV. EXPERIMENTS

We will now apply this general wavanglet method to a
series of OMEGA/MEX hyperspectral images and compare
the obtained classifications with the ones produced by two
alternative methods: BR and SFF (Section II-C1 and -C3). We
also evaluate quantitative detection limits for H2O and CO2 ices
in terms of abundance. We use synthetic spectra for this. This
paper consists of five tests: classification accuracy, separability
between classes, multiple endmembers and possible overlap-
ping signatures, mass processing feasibility, and calculation
time.

A. Application of the Wavanglet Method to the Omega Dataset

We follow the four steps described in Section III to apply the
method to a collection of OMEGA/MEX images covering the
polar regions of Mars.
1) Step A—Choice of Relevant “Endmembers” (Reference

Spectra): The OMEGA spectra display signatures characteris-
tic of both the atmosphere and the surface. The atmospheric
contribution is due to gaseous CO2 and, depending on weather
conditions, to clouds of dust, CO2, and H2O ices. The spectral
effect of the clouds can often be neglected for a first-order
approximation. The surface contribution is due to a mixture
of H2O ice, CO2 ice, and dust in various proportions. In the
images, we try to detect the last three compounds to which
we attribute reference spectra (see Fig. 2). Pure H2O and CO2

are represented by synthetic spectra computed by a reflectance
model [18] using the physical parameters listed in Table III and
an optical constant measured in the laboratory [25]–[27]. These
parameters have been chosen to be compatible with recent
studies of both south and north Martian polar regions [10], [11],
[28], [29]. On the other hand, the third reference spectrum rep-
resenting polar dust is extracted from a single OMEGA image
covering the southern high latitudes by averaging all spectra
within a relatively homogeneous region near 70◦ longitude

TABLE III
SYNTHETIC ENDMEMBER PARAMETERS

TABLE IV
LIST OF ELIMINATED WAVELETS

Fig. 3. Representation of the selected subspace of (upper part) wavelets that
best discriminate the endmembers (lower part). (a)–(d) Wavelets selected in
scales 5 to 8. (e) Observed dust and atmosphere spectra, (f) synthetic CO2 ice,
and (g) synthetic H2O ice. See Section II-B for wavelet representation.

and −77◦ latitude. Note that this spectrum is almost featureless
in the near-infrared range except for the 3-µm band due to
the hydration of the minerals and the absorption bands of
atmospheric CO2. Globally, the dust spectrum does not display
much spatial variation in this spectral range. Indeed, it is well
mixed by winds and spread over wide areas. Thus, we can as-
sume that our reference spectrum is representative of most areas
of both polar regions. Our Martian studies focus mainly on the
two first endmembers while the third endmember represents
spectral features that appear in the data but which are not of
interest to us.
2) Step B—Determination of the Best Subspace:
Step B1—Continuum removal: We use only the last four

scales (from 5 to 8) in order to remove the contribution of the
continuum.

Step B2—Best discrimination: We prefer the automatic
threshold method [method 3)], with norm L2 and the value
c = 2.5 to select the best subspace. This threshold criterion
optimizes the classification.

Step B3—Circularity, noise, and dead spectels: We elim-
inate all wavelets containing a nonzero contribution from the
last spectel number 255.

We eliminate wavelets polluted by damaged spectels (num-
ber 34, 78, and 158) with an energy criterion (D = 0.45).
Table IV lists the indexes of the eliminated wavelets.

Finally, the selected subspace is formed by the 12 wavelets
shown in Fig. 3 and summarized in Table V.
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compound in the image, regardless of its physical properties,
and and must minimize false detections.

As the SA calculation is invariant with any linear ortho-
normal transformation, such as the Daubechies WT, we have
the choice to perform the SA mapping of all the pixels in the
filtered wavelet base or in the filtered spectral space. The latter
is reconstructed by the inverse transform of the filtered wavelet
base. The calculation of the SA is faster in the filtered wavelet
base than in the complete spectral space because the dimensions
of the former are lower. We therefore choose to perform the
calculation in the filtered wavelet base.

D. Step D: Automatic Mass Classification With SAs in
This Subspace

All the parameters are now adjusted to perform the auto-
mated classification. For each image and each spectrum of the
reference base, a detection mask will be created. For datasets
spanning a long time range (several months to years), many pa-
rameters can vary. For instance, the bad channel list can change
with time thus affecting Steps B2 and B3. If this happens, then
Step C should be adapted according to the former steps.

IV. EXPERIMENTS

We will now apply this general wavanglet method to a
series of OMEGA/MEX hyperspectral images and compare
the obtained classifications with the ones produced by two
alternative methods: BR and SFF (Section II-C1 and -C3). We
also evaluate quantitative detection limits for H2O and CO2 ices
in terms of abundance. We use synthetic spectra for this. This
paper consists of five tests: classification accuracy, separability
between classes, multiple endmembers and possible overlap-
ping signatures, mass processing feasibility, and calculation
time.

A. Application of the Wavanglet Method to the Omega Dataset

We follow the four steps described in Section III to apply the
method to a collection of OMEGA/MEX images covering the
polar regions of Mars.
1) Step A—Choice of Relevant “Endmembers” (Reference

Spectra): The OMEGA spectra display signatures characteris-
tic of both the atmosphere and the surface. The atmospheric
contribution is due to gaseous CO2 and, depending on weather
conditions, to clouds of dust, CO2, and H2O ices. The spectral
effect of the clouds can often be neglected for a first-order
approximation. The surface contribution is due to a mixture
of H2O ice, CO2 ice, and dust in various proportions. In the
images, we try to detect the last three compounds to which
we attribute reference spectra (see Fig. 2). Pure H2O and CO2

are represented by synthetic spectra computed by a reflectance
model [18] using the physical parameters listed in Table III and
an optical constant measured in the laboratory [25]–[27]. These
parameters have been chosen to be compatible with recent
studies of both south and north Martian polar regions [10], [11],
[28], [29]. On the other hand, the third reference spectrum rep-
resenting polar dust is extracted from a single OMEGA image
covering the southern high latitudes by averaging all spectra
within a relatively homogeneous region near 70◦ longitude

TABLE III
SYNTHETIC ENDMEMBER PARAMETERS

TABLE IV
LIST OF ELIMINATED WAVELETS

Fig. 3. Representation of the selected subspace of (upper part) wavelets that
best discriminate the endmembers (lower part). (a)–(d) Wavelets selected in
scales 5 to 8. (e) Observed dust and atmosphere spectra, (f) synthetic CO2 ice,
and (g) synthetic H2O ice. See Section II-B for wavelet representation.

and −77◦ latitude. Note that this spectrum is almost featureless
in the near-infrared range except for the 3-µm band due to
the hydration of the minerals and the absorption bands of
atmospheric CO2. Globally, the dust spectrum does not display
much spatial variation in this spectral range. Indeed, it is well
mixed by winds and spread over wide areas. Thus, we can as-
sume that our reference spectrum is representative of most areas
of both polar regions. Our Martian studies focus mainly on the
two first endmembers while the third endmember represents
spectral features that appear in the data but which are not of
interest to us.
2) Step B—Determination of the Best Subspace:
Step B1—Continuum removal: We use only the last four

scales (from 5 to 8) in order to remove the contribution of the
continuum.

Step B2—Best discrimination: We prefer the automatic
threshold method [method 3)], with norm L2 and the value
c = 2.5 to select the best subspace. This threshold criterion
optimizes the classification.

Step B3—Circularity, noise, and dead spectels: We elim-
inate all wavelets containing a nonzero contribution from the
last spectel number 255.

We eliminate wavelets polluted by damaged spectels (num-
ber 34, 78, and 158) with an energy criterion (D = 0.45).
Table IV lists the indexes of the eliminated wavelets.

Finally, the selected subspace is formed by the 12 wavelets
shown in Fig. 3 and summarized in Table V.



Detection using Linear unmixing

• Linear unmixing

• under constraints

• compensate non linearities

• Highly parallel algorithm (GPU)

• Limitations:

• ~50 endmembers

Legendre et al., 2013
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ponents (ICs), we have to pay attention to their physical
interpretation. In fact, additional knowledges can be used.
In this purpose: (i) synthetic reference spectra of the main
endmembers obtained after inversion [4]; (ii) a supervised
classification using wavalet transform called wavanglet
which is in accordance with Mars physical knowledge [5].
Finally, a last difficulty is to check the relevance of the
linear mixture model as well as the hypothesis on which
the algorithm is based.

From a methodological point of view, the objective of
this paper is to point out that, when source independence
assumption is not fully satisfied, an ICA algorithm can pro-
vide spurious ICs and one has to prefer semi-blind meth-
ods which relax partially independence assumption and ac-
counts for additional informations. Especially, in hyper-
spectral imaging an evident prior concerns the positivity of
the images and the component spectra.

The paper is organized as follows. Section 2 presents the
simplified observation model in the case of a geographi-
cal mixture and the possible decomposition models. Sec-
tion 3 recalls briefly the source separation problem. Section
4 presents the results when applying ICA to hyperspec-
tral data, and discuss the relevance of the separation. Sec-
tion 5 introduces the Bayesian framework and shows how
Bayesian methods can ensure the positivity of the sources
and of the mixing coefficients. The results on Mars hyper-
spectral data are then discussed. Section 7 recalls the main
results and gives some perspectives of this research work.

2. Hyperspectral Data Modeling

The OMEGA spectrometer, carried by Mars Express
spacecraft on an elliptical orbit, has a spatial resolution
range from 300 m to 4 km. This instrument has three chan-
nels, a visible channel and two near infrared channels. We
will focus in this work only on the near infrared channels
since the behavior between major chemicals can be dis-
criminated in this spectral range. The analysis is focused
on a data set consisting in a single hyperspectral data cube
obtained by looking to the South Polar Cap of Mars in
the local summer where CO2 ice, water ice and dust were
previously detected [5, 6]. This data cube is made up with
2 channels: 128 spectral planes from 0.93 µm to 2.73 µm
with a resolution of 0.013µm and 128 spectral planes from
2.55µm to 5.11µm with a resolution of 0.020µm. After cal-
ibration, the dimensionless physical unit used to express
the spectra is the ”reflectance”, which is the ratio between
the irradiance leaving each pixel toward the sensor and the
solar irradiance at the ground. Interactions between pho-
tons coming from the sun and the planet Mars, through its
atmosphere and surface, allows us to identify the different
compounds present in the planet. Those compounds are
mixed and usually different chemical species can be identi-
fied in each measured spectra. Two kinds of physical mixing
at the ground can be observed [7]:
– Geographic mixture: each pixel is a patchy area made

of several pure compounds. This type of mixture, some-
times called ”sub-pixel mixture”, happens when the spa-
tial resolution is not large enough to observe the complex
geological combination pattern. The total reflectance in
this case will be a weighted sum of the pure constituent
reflectances. The weights (abundance fractions) associ-
ated to each pure constituent are surface proportions in-
side the pixel.

– Intimate mixture: each pixel is made of one single terrain
type which is a mixture at less than the typical mean-
path scale (typically the order of 1mm scale). The total
reflectance in this case will be a nonlinear function of
pure constituent reflectances.

The case of intimate mixtures, which needs nonlinear source
separation methods and further development, is not ad-
dressed here. In this paper, we perform our analysis with
hypothesis of a geographical mixtures and hence linear mix-
ing models.

2.1. Observation Model

The hyperspectral images can be modeled by examining
all the factors that contribute to the radiance signal reach-
ing the sensor after interaction of the sunlight with a plan-
etary surface. An analytical expression of the measured ra-
diance factor in a case of a Lambertian surface 2 with a
homogeneous atmosphere has been proposed in [8], under
the following assumptions: (i) the multiple diffusion term
r and the diffusion terms E(µ) are negligible, (ii) the path
through the atmosphere is equivalent for all pixels, (iii) the
direct atmospheric contribution only depends on the wave-
length, (iv) the emergence direction is always the same.
Thus, based on this model and using the geographic mix-
ture assumption, the radiance factor at location (x, y) and
at wavelenght λ satisfies the following observation model:

L(x, y, λ) =
(

ρa(λ) + Φ(λ)
P∑

p=1

αp(x, y) ρp(λ)

)
cos [θ(x, y)] (1)

where Φ(λ) is the spectral atmospheric transmission,
θ(x, y) the angle between the solar direction and the sur-
face normal (solar incidence angle), P the number of
endmembers in the region of coordinates (x, y), ρp(λ) the
spectrum of the p-th endmember, αp(x, y) its weight in
the mixture and ρa(λ) the radiation that did not arrive
directly from the area under view. This mixture model can
also be written as:

L(x, y, λ) =
P∑

p=1

α′
p(x, y) · ρ′p(λ) + E(x, y, λ) (2)

where
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ponents (ICs), we have to pay attention to their physical
interpretation. In fact, additional knowledges can be used.
In this purpose: (i) synthetic reference spectra of the main
endmembers obtained after inversion [4]; (ii) a supervised
classification using wavalet transform called wavanglet
which is in accordance with Mars physical knowledge [5].
Finally, a last difficulty is to check the relevance of the
linear mixture model as well as the hypothesis on which
the algorithm is based.

From a methodological point of view, the objective of
this paper is to point out that, when source independence
assumption is not fully satisfied, an ICA algorithm can pro-
vide spurious ICs and one has to prefer semi-blind meth-
ods which relax partially independence assumption and ac-
counts for additional informations. Especially, in hyper-
spectral imaging an evident prior concerns the positivity of
the images and the component spectra.

The paper is organized as follows. Section 2 presents the
simplified observation model in the case of a geographi-
cal mixture and the possible decomposition models. Sec-
tion 3 recalls briefly the source separation problem. Section
4 presents the results when applying ICA to hyperspec-
tral data, and discuss the relevance of the separation. Sec-
tion 5 introduces the Bayesian framework and shows how
Bayesian methods can ensure the positivity of the sources
and of the mixing coefficients. The results on Mars hyper-
spectral data are then discussed. Section 7 recalls the main
results and gives some perspectives of this research work.
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at the ground can be observed [7]:
– Geographic mixture: each pixel is a patchy area made
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– Intimate mixture: each pixel is made of one single terrain
type which is a mixture at less than the typical mean-
path scale (typically the order of 1mm scale). The total
reflectance in this case will be a nonlinear function of
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separation methods and further development, is not ad-
dressed here. In this paper, we perform our analysis with
hypothesis of a geographical mixtures and hence linear mix-
ing models.
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The hyperspectral images can be modeled by examining
all the factors that contribute to the radiance signal reach-
ing the sensor after interaction of the sunlight with a plan-
etary surface. An analytical expression of the measured ra-
diance factor in a case of a Lambertian surface 2 with a
homogeneous atmosphere has been proposed in [8], under
the following assumptions: (i) the multiple diffusion term
r and the diffusion terms E(µ) are negligible, (ii) the path
through the atmosphere is equivalent for all pixels, (iii) the
direct atmospheric contribution only depends on the wave-
length, (iv) the emergence direction is always the same.
Thus, based on this model and using the geographic mix-
ture assumption, the radiance factor at location (x, y) and
at wavelenght λ satisfies the following observation model:
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the mixture and ρa(λ) the radiation that did not arrive
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also be written as:

L(x, y, λ) =
P∑

p=1

α′
p(x, y) · ρ′p(λ) + E(x, y, λ) (2)

where

2 a surface that reflects the light independently of both incidence
and emergence directions

2

min ||αp.ρp − L||
min ||αp.ρp − L||, αp > 0,

�
αp = 1

1

Combe et al., 2008

Schmidt et al., 2014

Olivine Fayalite CRISM (%)Hypersthene PYX0.2H>250u (%) Olivine Forsterite CRISM (%)Diopside CPX CRISM (%) Phyll; Clay Illite (%)

Sum (%)

OMEGA ORB422_4

RMSPhyll; Chlorite (%)Ferrihydrite (%)Oxide; Goethite (%)

Figure 8: Detection of 8 minerals over 44 spectra on OMEGA image ORB422_4 of Syrtis

Major using IPLS in the hue-saturation-value color system. The hue (color) represents the

mixing coefficient. The saturation (color or b/w) represents the error. The value (intensity of

color or b/w) represents the rms. Spectral mixing coefficient map are shown with following

conditions : (i) maximum mixing coefficient > 5% , (ii) error on mixing coefficient < mixing

coefficient, and (iii) RMS < 10x the dark current noise (see text). Pyroxene, olivines, phyl-

losilicates, ferrihydrite and oxides are detected and the corresponding “mixing coefficient“ are

mapped (color refer to the online version of the article).
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Fig. 5. Sensitivity to the grain size. (A) The OMEGA spectrum (black line) is com-
pared to three models. The best fit (red line) is obtained by assuming all the
parameters free (see Table 2 for final results) and was already shown in Fig. 3. If
the grain size is forced to be 100 (blue spectrum) or 200 µm (green spectrum), the
fits are slightly degraded. (B) The abundances of three major minerals correspond
to the simulations shown in (A).

between measured spectrum and computed spectrum (Press et al.,
2002). This optimization procedure depends on the initial condi-
tions. We design another sensitivity test to discuss the effect of the
input parameters on the validity of the inferred modal mineralogy.
We vary the starting grain size and abundance parameters for each
end-member and assess the consistency of resultant grain size and
abundance solutions. The test is done on a large number of spectra
extracted from the DCT unit of Terra Meridiani in order to better
evaluate the uncertainties. Comparison between the two simula-
tions shows that the final average values of the abundances vary
only slightly with the values of the starting parameters (Fig. 7):
28± 3% versus 28 ± 5% for HCP, 10± 4% versus 12± 3% for LCP
and 52± 4% versus 47 ± 7% for plagioclase. Of special interest is
the increase of pyroxene abundances versus the pyroxene band
depth value. This expected compositional trend makes us confi-
dent on the methodology and the values of the abundances. The
plagioclase abundance is less robust but the distributions and the
averaged values of abundances are still consistent within the un-
certainties of the method (∼10%). By contrast, the initial conditions
significantly affect the grain size parameter. As the input grain size
parameter decreases or increases, the resultant solutions similarly
shifted to the same part of the parameter space. For instance, the
final grain sizes of HCP are close to the initial value of 100 µm for
simulation 1, while the grain sizes of the simulation 2 that started
with a 300 µm value, are ranged between 200 and 500 µm. This
reveals that the starting parameters do have a significant effect on

Fig. 6. Effect of the grain size of plagioclase. (A) Data spectrum compared to four
model-derived spectra for which the size of plagioclase grains is fixed to 10 µm (red
spectrum), 100 µm (orange), 500 (cyan), and 1000 µm (green). The blue spectrum
indicates the best fit when all the parameters including the plagioclase grain size
are free. In this case, the grain size of plagioclase is a free parameter. (B) Abundance
of the different minerals for the five fitting procedures shown in (A). RMS is con-
sidered to be acceptable when it is smaller than 0.30%. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

the resultant solutions whatever the mineral. However, the ranges
of the final acceptable solutions can be evaluated. Most of the final
values of the plagioclase grain size clearly plot in the 50–150 µm
range for the two simulations. The same trend is observed for the
LCP component. The HCP grain size shows large standard deviation,
but still in the range of a few 10s to a few 100s of micrometers as
discussed previously.

The simplex algorithm calculates thousands of possible mix-
tures before reaching a final solution. In order to illustrate the
range of values considered in the fitting effort and provide an
estimate of the uncertainty in the final results, we plot the RMS
versus component abundances and diameters for several represen-
tative pyroxene band depths (0.01, 0.02, 0.03, 0.04, 0.05 and 0.06)
in Fig. 8. Apart from the grain size of the martian dust compo-
nent that is initially fixed, the grain sizes are ranged in the 10s
to a few 100s µm, which confirms the previous estimates. The pa-
rameter space of the abundances is 40–55% for plagioclase, 25–35%
for HCP, 10–15% for LCP, 5–10% for the dust, and less than 5–10%
for olivine. These variations are also in good agreement with the
uncertainties previously determined. For a given spectrum and for
values of RMS lower than 0.35%, the excursions of the parameter
are even smaller.

3.4. Sensitivity to the olivine mineral

Olivine has strong absorption bands in the wavelength range
under consideration, and its abundance should be well constrained.

• Minimisation technique

• Surface

• Atmosphere

• Limitations

• Slow

• Multiples solutions

Inversion using Least square

Poulet et al., 2009

Wolff et al., 2009



similar showing that the area of interest does not contain as
much dust as the wavanglet methodology predicts. On the
contrary, estimations given by GRSIR are more coherent
with this spectral analysis.

6.3. Discussion of the Southern Permanent Cap
Properties

[47] The parameter maps estimated by GRSIR are geore-
ferenced using ancillary data provided by the OMEGA team
and then are merged into global geographical mosaics. The
latter covers the entire bright permanent polar cap (BPPC)
with the exception of a limited area centered around
(89!270S, 34!580W). We focus on the absolute variations
of four unconstrained parameters: water ice and dust pro-

portions, water and CO2 ice grain size (Figure 10). The
mosaics do show very few artificial discontinuities across
the cap contrary to counterparts that we generated using
parameter maps obtained by k-NN. This smoothness is an
additional proof that GRSIR gives consistent results from
observations acquired by OMEGA under different condi-
tions. The different parameters do not show any obvious
intercorrelation. Furthermore the mosaics provide a picture
that is comptatible in its broad lines with the one drawn by
Douté et al. [2007a]. These authors estimated trends of
variations for water and dust contents in the CO2 ice of the
BPPC by combining classification techniques and selective
physical modeling of individual representative spectra (see
section 3.3 and Figure 13 of the latter paper). Mosaics of

Figure 10. Global mosaics illustrating the absolute variations of (a) water ice and (b) dust proportions,
as well as (c) water ice and (d) CO2 ice grain sizes across the entire permanent bright polar cap. They are
derived from individual parameter maps obtained by inversing OMEGA observations 41, 61, and 103
with GRSIR.
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Inversion using Linear Subspace
• Look up table

• GRSIR

• Projection into a linear subspace

• Very fast

• Limitations: 

• Non linearities

• Multiple solutions

Bernard-Michel et al., Statistic and computing, 2009
Bernard-Michel et al., JGR, 2009

 Douté et al., LPSC, 2007
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Bayesian Inversion

!• Maximum likelihood inversion

Andrieu, F. et al., in preparation

• Monte Carlo inversion 
on photometry

• Limitations:

•  Computation time 

Ceamanos et al., 2013
Fernando, J. et al., 2013



Data Science Challenges 
for hyperspectral images

• Radiative transfer inversion (bayesian technique)

• estimation of surface/atmospheric properties

• How to represent the data (global map, 
wavelength, time) ?



Conclusion

• Planetary Science (and Geoscience) needs Data 
Science revolution

• Data Mining

• Data visualisation

• Massive data treatment

• Virtual Observatory


