

Frédéric Schmidt

Planetary Science

- Planetary formation
 - From disk to (exo)planets
 - Meteorites, comets

Planetary Science

- Planetary bodies
 - Interior
 - Surface
 - Atmosphere
 - lonosphere

Planetary Science

- Planetary bodies
 - Interior
 - Surface
 - Atmosphere
 - lonosphere

Remote sensing: imagery

Big scientific questions

- Geologic evolution (tectonic, volcanic, ...)
- Climate evolution (climate change, escape, ...)
- Habitability (origin of life, human exploration)

Big scientific questions

- Geologic evolution (tectonic, volcanic, ...)
- Climate evolution (climate change, escape, ...)
- Habitability (origin of life, human exploration)

Raw data

- Mars Express (ESA, launched in 2003): ~50 Tb
- Mars Reconnaissance Orbiter (NASA, launched in 2005): ~200 Tb

Calibrated data

Increase factor : ~10

Huge amount of data

- How to treat the data?
- How to represent the scientific results (in a global map)?

Large volume products

- High resolution spectra
- High resolution images
- Hyperpectral images
- Multi-angular hyperspectral images

Large volume products

- High resolution spectra
- High resolution images
- Hyperpectral images
- Multi-angular hyperspectral images

Imaging techniques

- Usual Camera
- Pushbroom system
 - up to 20 000 pixels

Examples of high resolution images datasets

- MOC (Mars Global Surveyor, NASA) Malin and Edgett, 2000
- HRSC (Mars Express, ESA) Neukum et al., 2004
- ISS (Cassini, NASA) Porco et al., 2004
- HiRISE (Mars Reconnaissance Orbiter, NASA)

McEwen et al., 2007

• ...

Data Science Challenges for images

Tools for large dataset treatment:

- I. global scale mosaic visualisation
- 2. stereoscopy to create DEM
- 3. change detection (crater, dust devils, dune, ...)
- 4. automatic feature identification

1. Scientific data visualisation

Google Mars
 http://www.google.com/mars/

MapAPlanet
 http://www.mapaplanet.org/

• JMars,...

http://jmars.asu.edu/

- Limitations:
 - no scientific data
 - not complete
 - Slow

1. Data visualisation project

- Web based approach
- 3D and GIS oriented

C. Marmo (GEOPS/IAS/ OSUPS)

2. Digital Elevation Model

- Stereoscopy
 - based on image correlation
- Limitations:
 - Very slow
 - Uncertainties?

3. Change detection

- HiRISE (august 2011)
- Flow
- Summer (~30°S)
- Liquid water?

3. Change detection

- HiRISE (august 2011)
- Flow
- Summer (~30°S)
- Liquid water?

4. Feature detection

- Automatic crater counting
 - on images
 Urbach et al., 2009
 - on DEM Stepinski et al., 2009
- Limitations:
 - very slow
 - accuracy

Data Science Challenges for images

- Data treatment (DEM)
- Data mining (change detection, feature identification)
- How to represent the data (global map, time)?

Large volume products

- High resolution spectra
- High resolution images
- Hyperpectral images
- Multi-angular hyperspectral images

Visible and Near-IR signal

Longueur d'onde

 10μ

 100μ

Contribution:

- atmosphere
- surface

Imaging spectrometer

Hyperspectral image

Examples of hyperspectral datasets

- OMEGA (Mars Express, ESA) Bibring et al., 2004
- VIRTIS (Venus Express, ESA) Drossart et al., 2007
- VIMS (Cassini, NASA) Brown et al., 2004
- CRISM (Mars Reconnaissance Orbiter, NASA)

Murchie et al., 2007

• ...

Data Science Challenges for hyperspectral images

- Detection
 - band ratios, wavelets, linear unmixing
- Quantification
 - radiative transfer inversion

Data Science Challenges for hyperspectral images

Detection

- band ratios, wavelets, linear unmixing
- Quantification
 - radiative transfer inversion

Detection using Band ratio

- Very Fast
- Limitations:
 - superposition of bands
 - angular effects

Absorption depth

Pyroxene global map

Detection using Wavelets

WAVANGLET

Schmidt et al., IEEE TGRS 2007

correlation in a wavelet coefficient subspace

- Fast and efficient to remove angular effect
- Limitations:
 - ~10 endmembers

Schmidt et al., Icarus 2009

Detection using Wavelets

- WAVANGLET

 - Schmidt et al., IEEE TGRS 2007

 correlation in a wavelet coefficient subspace

- Fast and efficient to remove angular effect
- Limitations:
 - ~10 endmembers

Schmidt et al., Icarus 2009

Detection using Linear unmixing

- Linear unmixing
 Combe et al., 2008
 - under constraints

 Legendre et al., 2013
- king $L(x,y,\lambda)=\sum_{p=1}\alpha_p(x,y)\,\rho_p(\lambda)$ be et al., 2008 $\min ||\alpha_p.\rho_p-L||,\ \alpha_p>0,\ \sum\alpha_p=1$ Straints
 - compensate non linearities
 Schmidt et al., 2014

- Highly parallel algorithm (GPU)
- Limitations:
 - ~50 endmembers

Data Science Challenges for hyperspectral images

- Detection
 - band ratios, wavelets, linear unmixing
- Quantification
 - radiative transfer inversion

Spectral shape = physical state

Grain size Free mean path

Douté, et al, JGR, 1998

Schmitt, et al, Solar System Ice, 1998

Inversion using Least square

- Minimisation technique
 - Surface

Poulet et al., 2009

Atmosphere

Wolff et al., 2009

- Limitations
 - Slow
 - Multiples solutions

Inversion using Linear Subspace

 Look up table Douté et al., LPSC, 2007

GRSIR Bernard-Michel et al., Statistic and computing, 2009
Bernard-Michel et al., JGR, 2009

Projection into a linear subspace

- Very fast
- Limitations:
 - Non linearities
 - Multiple solutions

CO₂ ice grain size

Bayesian Inversion

Monte Carlo inversion Ceamanos et al., 2013
 on photometry Fernando, J. et al., 2013

- Limitations:
 - Computation time

Maximum likelihood inversion

Andrieu, F. et al., in preparation

Data Science Challenges for hyperspectral images

- Radiative transfer inversion (bayesian technique)
 - estimation of surface/atmospheric properties

 How to represent the data (global map, wavelength, time)?

Conclusion

- Planetary Science (and Geoscience) needs Data Science revolution
 - Data Mining
 - Data visualisation
 - Massive data treatment
- Virtual Observatory

