Searches for the SM Higgs boson in the tau-tau decay channel at ATLAS

ATLAS

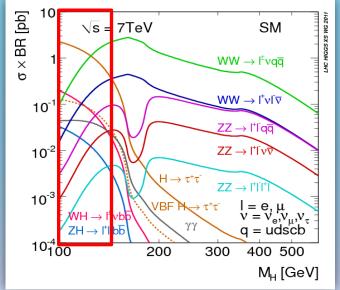
19th July 2012

Higgs Hunting 2012 Orsay-France 19th July 2012

<u>Keita Hanawa</u>

On behalf of the ATLAS collaboration

送送 筑波大学 University of Tsukuba


Introduction of $H \rightarrow \tau \tau$ analysis

<u>Motivation</u>

 Large branching ratio in 110<mH<150 GeV.
 ττ mode is one of the important channels to measure the Higgs coupling with each fermion.

- There are 3 final states based on the decay of T.

Channel	Br.	Characteristics	
H→ττ→lepton + lepton + 4v	12.4%	Clean but small stat.	
$H \rightarrow \tau \tau \rightarrow$ hadronic τ + hadronic τ + 2v	42.0%	Large Br.	Focus on
$H \rightarrow \tau \tau \rightarrow lepton + hadronic \tau + 3v$	45.6%	Large Br. and clean	

<u>Datasets</u>

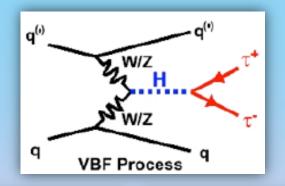
- 4.7 fb⁻¹ of pp collisions collected in 2011 at a CM energy of 7 TeV.

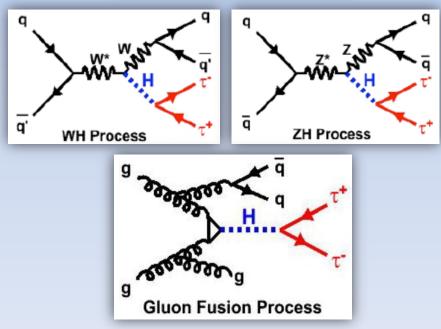
Analysis strategy: Categorization

 Events are split into 7 categories according to the number of reconstructed jets and their topologies to maximize sensitivity.

Categories

Vector boson fusion(VBF) category

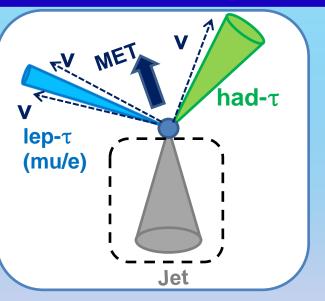

- 2nd largest production cross section.
- Most sensitive category due to unique topology: 2 jets w/ high pt, large Δη_{ii}.


>=1jet category

- For ggH and WH/VH process.

Ojet category

- To cover the bulk of ggH.


Keita Hanawa

3

Event selection

Preselection

Topology: One lepton(e/μ) and hadronic tau.
1.Trigger : Single lepton trigger.
2.Exactly one lepton and tau with opposite sign.
3.Missing Et(MET)>20 GeV except for 0jet.
4.mT(lepton, MET)<30GeV to reduce W+jets contribution.

Categorization

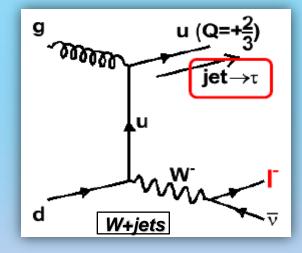
Ojet	>=1jet	VBF
 •No jet with pT>25GeV •4 categories e/mu separated Low/High MET (Low: MET<20 GeV) (High: MET>20GeV) 	 >=1jet with pT>25GeV Not VBF category 2 categories - e/mu separated 	•Opposite hemispheres $(\eta_{j1} \times \eta_{j2} < 0)$ • $ \eta_{j1} - \eta_{j2} > 3.0$ •Leptons between jets: $\eta_{j1} < \eta_{l^{\mu}}\eta_{\tau} < \eta_{j2}$ (or j1 \leftrightarrow j2) •M(j1,j2) > 300 GeV

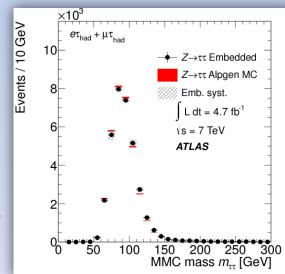
Missing Mass Calculator(MMC): Our final discriminant variable.

19th July 2012

Backgrounds

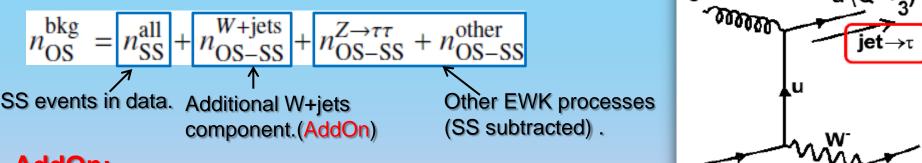
1.Reducible background

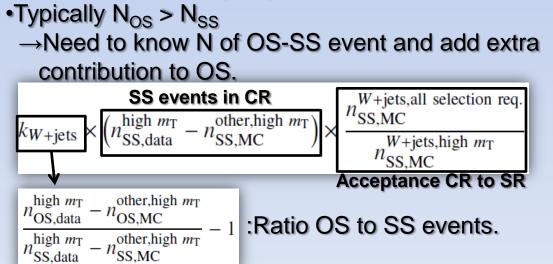

- Sources : QCD multi-jets, W+jets and so on.
- Estimation: Data-driven(described later.)

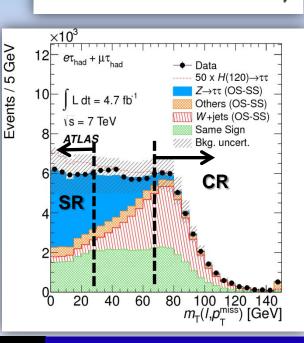

2.Irreducible background

- Sources: Z→TT, ttbar and diboson....
- Estimation: Embedded sample for shape and MC(theory) for normalization.

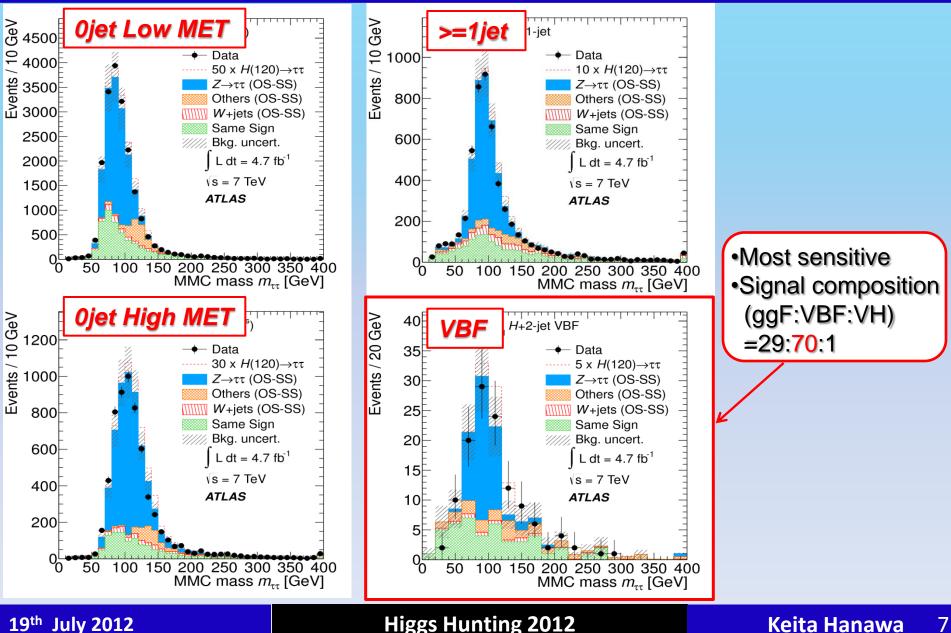
<u>**⊤-embedded Z**→µµ data</u>(Embedded sample)


- Shape estimation from Z→µµ data:
 1.Remove mu tracks and calorimeter cells.
 2.Replace with tau from full-simulated Z→ττ decays.
- Event content from data, except tau decay products. (Jets/MET/pile-up/UE/etc are from the data)

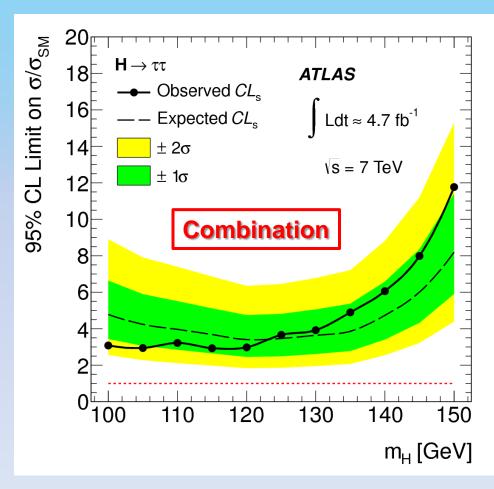

Background estimation for fake tau


- Assumption that QCD events are the same in the opposite sign(OS) and same sign (SS) region.(~10% uncertainty)

AddOn:


 Asymmetry in W+jets events due to charge correlation between W and outgoing quark.

19th July 2012


Result: MMC distributions

19th July 2012

Exclusion limit

- No excess is observed.
- Set limit.

Systematic sources (lh)	
Energy scale	~11%
QCD	~13%
W+jets AddOn	~15%

mH [GeV]	Observed	Expected
115	2.9(5.0)	3.7(5.8)
120	3.0(5.4)	3.4(5.5)
125	3.7(6.2)	3.5(5.9)
130	3.9(6.6)	3.6(6.1)
	1	

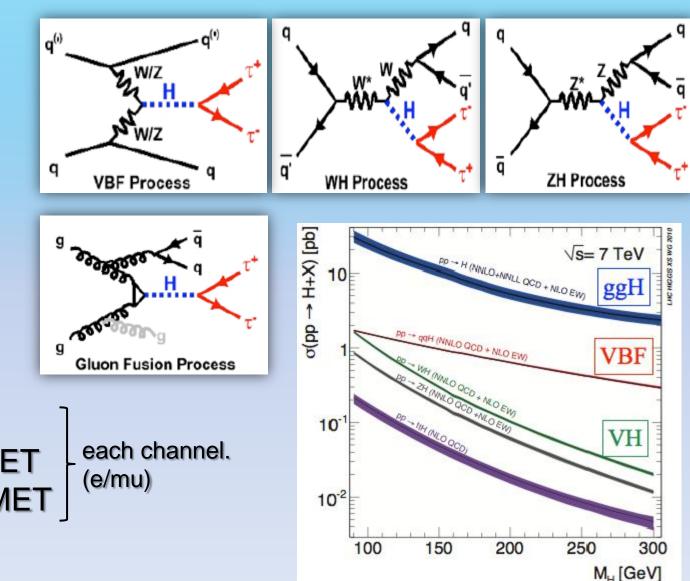
*Numbers in parentheses are for lepton-hadron channel only.

19th July 2012

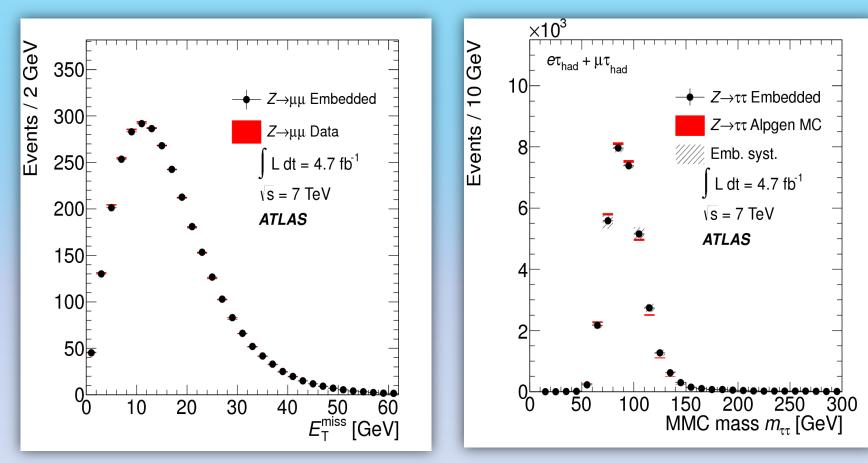
Summary

- Search for SM Higgs Boson decaying into tau pairs performed with the ATLAS detector is presented, mainly on lepton-hadron channel.
- •Full 2011 data sample of 4.7fb-1 collected at 7TeV.
- Categorized based on presence of jets and their kinematics and Missing Et.
- Most sensitive channel is VBF category in this channel.
- •Observed exclusion limit is $3.7x\sigma_{SM}$ at m_H=125GeV
- (6.2x σ_{SM} from lepton-hadron channel only).
- \rightarrow Paper submitted to JHEP: arXiv:1206.5971
- Include 8 TeV data taken in 2012.
- The analysis is being further improved.

Back up


19th July 2012

Higgs Hunting 2012


Summary of categorization

Il channel: H+2jets VBF •H+2jets VH •H+1jet •H+0jet hh channel: •H+1jet Ih channel: H+2jets VBF •H+1jets

•H+0jet in low MET •H+0jet in high MET

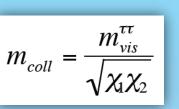
Embedded validation

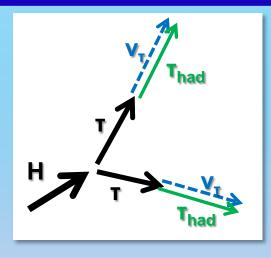
 E_T^{miss} comparison from the selected $Z \rightarrow \mu \mu$ events before and after this embedded.

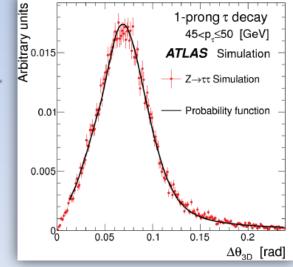
 \rightarrow No bias introduced by this method.

Comparison of MMC distribution from the embedded and simulated $Z \rightarrow \tau \tau$. \rightarrow Good agreement is found.

Di-tau mass reconstruction

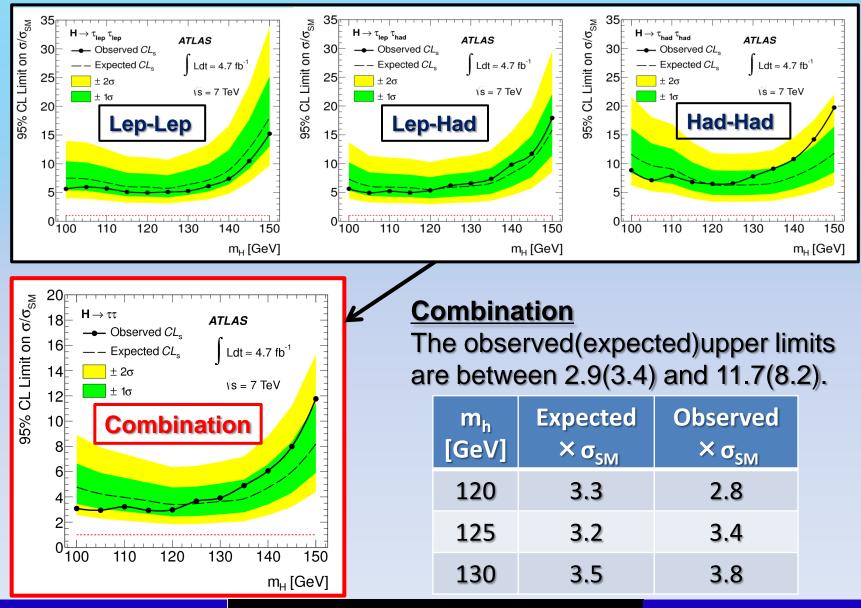

1.Collinear approximation


- Assumption:
 - т decay products are collinear.
 - All the MET comes from v_{τ} s.
- It doesn't work when t's are back-to-back.
- •x₁, x₂ calculated in the function of MET and p_{x,v} of τ_{had}.


2.Missing mass calculator(MMC)

- Algorithm based on Nucl. Inst. Meth. A 654 (2011) 481 •Δ θ (v-τ) is very small but non zero.
- Create grid point[Δφ(τ1,v's), Δφ(τ2,v's)].
- Solve 4 equations for P(v1) and P(v2) for each point. \rightarrow Select more likely solution.

$$\begin{split} E_{\Gamma_x} &= p_{\text{mis}_1} \sin \theta_{\text{mis}_1} \cos \phi_{\text{mis}_1} + p_{\text{mis}_2} \sin \theta_{\text{mis}_2} \cos \phi_{\text{mis}_2} \\ E_{\Gamma_y} &= p_{\text{mis}_1} \sin \theta_{\text{mis}_1} \sin \phi_{\text{mis}_1} + p_{\text{mis}_2} \sin \theta_{\text{mis}_2} \sin \phi_{\text{mis}_2} \\ M_{\tau_1}^2 &= m_{\text{mis}_1}^2 + m_{\text{vis}_1}^2 + 2\sqrt{p_{\text{vis}_1}^2 + m_{\text{vis}_1}^2} \sqrt{p_{\text{mis}_1}^2 + m_{\text{mis}_1}^2} \\ &- 2p_{\text{vis}_1} p_{\text{mis}_1} \cos \Delta \theta_{vm_1} \\ M_{\tau_2}^2 &= m_{\text{mis}_2}^2 + m_{\text{vis}_2}^2 + 2\sqrt{p_{\text{vis}_2}^2 + m_{\text{vis}_2}^2} \sqrt{p_{\text{mis}_2}^2 + m_{\text{mis}_2}^2} \\ &- 2p_{\text{vis}_2} p_{\text{mis}_2} \cos \Delta \theta_{vm_2} \end{split}$$



19th July 2012

Higgs Hunting 2012

Exclusion limit

19th July 2012

Higgs Hunting 2012

Event yield: Lep-Lep, Had-Had

Lep-Lep channel:

	$ee + \mu\mu + e\mu$	$ee + \mu\mu + e\mu$	$ee + \mu\mu + e\mu$	$e\mu$	
	$H{+}2\text{-jet}$ VBF	H +2-jet VH	H + 1-jet	H + 0-jet	
$gg \to H$ signal	$0.26{\pm}0.06{\pm}0.10$	$0.8 \pm 0.1 \pm 0.2$	$3.9 \pm 0.2 \pm 1.0$	$23 \pm 1 \pm 3$	
VBF H signal	$1.08 {\pm} 0.03 {\pm} 0.11$	$0.10 {\pm} 0.01 {\pm} 0.01$	$1.15 {\pm} 0.03 {\pm} 0.01$	$0.75 {\pm} 0.03 {\pm} 0.06$	
VH signal	$0.01{\pm}0.01{\pm}0.01$	$0.53 {\pm} 0.02 {\pm} 0.07$	$0.40 \pm 0.02 \pm 0.03$	$0.52{\pm}0.02{\pm}0.04$	
$Z/\gamma^* \to \tau^+ \tau^-$	$24 \pm 3 \pm 2$	$107 \pm 12 \pm 9$	$(0.52 \pm 0.01 \pm 0.04) \cdot 10^3$	$(9.68 \pm 0.05 \pm 0.07) \cdot 10^3$	Main bkg.
$Z/\gamma^* \to \ell^+ \ell^- \ (\ell = e, \mu)$	$2 \pm 1 \pm 1$	$25 \pm 4 \pm 9$	$83 \pm 10 \pm 30$	$185 \pm 11 \pm 14$	
$t\bar{t}$ +single top	$7 \pm 1 \pm 2$	$42 \pm 2 \pm 6$	$98 \pm 3 \pm 12$	$169 \pm 4 \pm 14$	
WW/WZ/ZZ	$0.9\pm~0.3\pm~0.3$	$6 \pm 1 \pm 1$	$21 \ \pm \ 1 \ \pm \ 3$	$221 \pm 3 \pm 18$	
Fake leptons	$1.3\pm \ 0.8\pm \ 0.6$	$13 \pm 2 \pm 5$	$30 \pm 4 \pm 12$	$(1.2\pm0.5)\cdot10^3$	
Total background	$35 \pm 3 \pm 4$	$193 \pm 7 \pm 20$	$(0.75 \pm 0.01 \pm 0.05) \cdot 10^3$	$(11.4\pm0.5)\cdot10^3$	
Observed data	27	185	702	11420	

Had-Had channel:

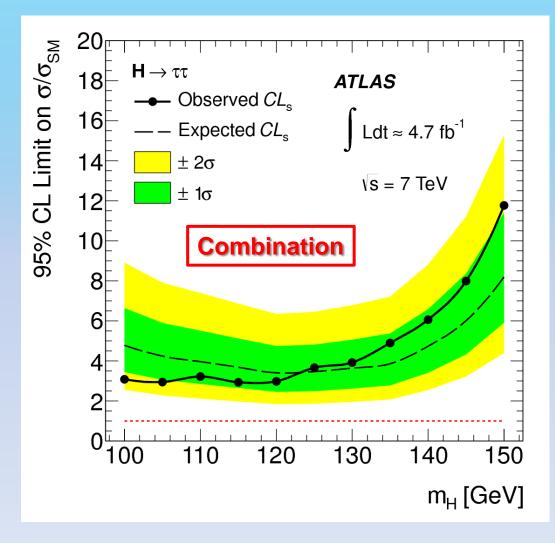
	$H \to \tau_{\rm had} \tau_{\rm had}$	
	H +1-jet	
$gg \to H$ signal	$3.1 \pm 0.2 \pm 0.6$	
VBF H signal	$1.51 \ \pm 0.05 \pm 0.18$	
VH signal	$0.61 \ \pm 0.04 \pm 0.06$	
$Z/\gamma^* \to \tau^+ \tau^-$	$287 \pm 23 \pm 34$	
W+jets / Z +jets	$6.1 \pm 1.3 \pm 1.4$	
$t\bar{t}$ +single top	$1.9 \pm 0.3 \pm 0.4$	
WW/WZ/ZZ	$2.1 \pm 0.4 \pm 0.4$	
Multi-jet	$54 \pm 21 \pm 12$	
Total background	$348 \pm 31 \pm 36$	
Observed data	317	

• Most sensitive!

Main bkg.

19th July 2012

Higgs Hunting 2012


Event yield: Lep-Had

	$H + 0$ -jet (low $E_{\rm T}^{\rm miss}$)		$H + 0$ -jet (high $E_{\rm T}^{\rm miss}$)	
	Electron	Muon	Electron	Muon
ggH signal	$11 \pm 1 \pm 2$	$17 \pm 1 \pm 4$	$7.1 \pm 0.8 \pm 1.5$	$9.8 \pm 0.9 \pm 2.1$
VBF H signal	$0.08 \pm 0.02 \pm 0.12$	$0.11 \pm 0.03 \pm 0.03$	$0.09 \pm 0.02 \pm 0.02$	$0.14 \pm 0.03 \pm 0.03$
VH signal	$0.07 \pm 0.02 \pm 0.05$	$0.10 \pm 0.03 \pm 0.01$	$0.08 \pm 0.0\ 2 \pm 0.01$	$0.08 \pm 0.02 \pm 0.01$
$n_{\rm SS}^{\rm all}$	$(3.3 \pm 0.2 \pm 0.7) \cdot 10^3$	$(2.0 \pm 0.1 \pm 0.4) \cdot 10^3$	$(0.69 \pm 0.06 \pm 0.14) \cdot 10^3$	$(0.47 \pm 0.04 \pm 0.09) \cdot 10^3$
$n_{ m SS}^{ m all} \ n_{ m OS-SS}^{W+ m jets}$	$(0.33\pm 0.02\pm 0.04)\cdot 10^3$	$(0.50 \pm 0.02 \pm 0.07) \cdot 10^3$	$(0.15\pm 0.01\pm 0.02)\cdot 10^3$	$(0.18 \pm 0.01 \pm 0.03) \cdot 10^3$
$n_{\rm OS-SS}^{Z \to \tau \tau}$	$(3.70 \pm 0.06 \pm 0.61) \cdot 10^3$	$(7.29 \pm 0.06 \pm 1.21) \cdot 10^3$	$(1.49 \pm 0.04 \pm 0.23) \cdot 10^3$	$(2.80 \pm 0.04 \pm 0.42) \cdot 10^3$
$n_{\rm OS-SS}^{\rm other}$	$(0.97 \pm 0.04 \pm 0.22) \cdot 10^3$	$(0.59 \pm 0.04 \pm 0.14) \cdot 10^3$	$(0.27 \pm 0.02 \pm 0.08) \cdot 10^3$	$(0.14\pm0.02\pm0.04)\cdot10^3$
Total background	$(8.2 \pm 0.2 \pm 0.8) \cdot 10^3$	$(10.4 \pm 0.2 \pm 1.2) \cdot 10^3$	$(2.59 \pm 0.07 \pm 0.26) \cdot 10^3$	$(3.59 \pm 0.06 \pm 0.43) \cdot 10^3$
Observed data	8363	10911	2545	3570
Altern. estimate	$(8.7 \pm 0.1 \pm 0.8) \cdot 10^3$	$(10.7 \pm 0.1 \pm 1.0) \cdot 10^3$	$(2.76\pm 0.05\pm 0.33)\cdot 10^3$	$(3.75 \pm 0.05 \pm 0.47) \cdot 10^3$

Most sensitive!

H +1-jet		H + 2-jet VBF		
	Electron	Muon	Electron + Muon	
ggH signal	$8.1 \pm 0.7 \pm 1.6$	$10.8 \pm 0.8 \pm 2.2$	$0.9 \pm 0.2 \pm 0.3$	
VBFH signal	$1.6 \pm 0.1 \pm 0.1$	$1.9 \pm 0.1 \pm 0.1$	$2.2 \pm 0.1 \pm 0.2$	
VH signal	$1.1 \pm 0.1 \pm 0.1$	$1.4 \pm 0.1 \pm 0.1$	$0.02 \pm 0.01 \pm 0.01$	
$n_{ m SS}^{ m all}$ $n_{ m OS-SS}^{W+ m jets}$	$(0.93 \pm 0.07 \pm 0.19) \cdot 10^3$	$(0.49 \pm 0.04 \pm 0.10) \cdot 10^3$	$45 \pm 7 \pm 9$	
$n_{\rm OS-SS}^{W+\rm jets}$	$(0.25\pm0.01\pm0.03)\cdot10^3$	$(0.26 \pm 0.01 \pm 0.03) \cdot 10^3$	$5 \pm 1 \pm 2$	
$n_{\rm OS-SS}^{Z \to \tau \tau}$	$(1.23\pm 0.03\pm 0.17)\cdot 10^3$	$(1.76 \pm 0.03 \pm 0.25) \cdot 10^3$	$54 \pm 6 \pm 8$	
$n_{ m OS-SS}^{ m other}$	$(0.28\pm 0.02\pm 0.04)\cdot 10^3$	$(0.24 \pm 0.01 \pm 0.03) \cdot 10^3$	$20 \pm 3 \pm 5$	
Total background	$(2.69 \pm 0.08 \pm 0.26) \cdot 10^3$	$(2.75 \pm 0.05 \pm 0.27) \cdot 10^3$	$124 \pm 10 \pm 13$	
Observed data	2610	2711	122	
Altern. estimate	$(2.63\pm 0.05\pm 0.25)\cdot 10^3$	$(2.72\pm 0.04\pm 0.28)\cdot 10^3$	$131 \pm 11 \pm 23$	

Combined limit

mH [GeV]	Observed	Expected
100	3.1	4.8
105	2.9	4.2
110	3.2	4.0
115	2.9	3.7
120	3.0	3.4
125	3.7	3.5
130	3.9	3.6
135	4.9	3.9
140	6.1	4.7
145	8.0	6.0
150	11.7	8.2

19th July 2012

Higgs Hunting 2012