

Standard Model Higgs search in $H \rightarrow ZZ \rightarrow I^+I^-\tau^+\tau^-$ decay channel with CMS experiment @ Vs = 7 and 8 TeV

Simranjit Singh Chhibra (Uni. & INFN Bari, Italy)*

On behalf of the CMS Collaboration

Higgs Hunting Workshop, 18-20 July, 2012, Orsay-France

* simranjit.chhibra@ba.infn.it

Outline

- SM Higgs X-sections and branching ratios
- $H \rightarrow ZZ \rightarrow II\tau\tau$ analysis in a nutshell
- e, μ and τ identification and isolation, and 4-lepton final state overlap removal
- Background estimation
- Results (5.05 fb⁻¹ @ 7 TeV + 5.26 fb⁻¹ @ 8TeV)
- Conclusions

SM Higgs: X-sections and Branching Ratios

$H \rightarrow ZZ \rightarrow II\tau\tau$ analysis in a nutshell

- Signature:
 - Both Z are on mass shell, and $190 < m_H < 600 \text{ GeV/c}^2$
 - Leading Z:
 - μ+μ⁻
 - e+e-

- Sub-leading $Z \rightarrow \tau^+ \tau^-$:
 - $\tau_h \tau_h$
 - $\tau_{\mu}\tau_{h}$
 - $\tau_e \tau_h$ • $\tau_e \tau_u$

8 final states

```
\mu\mu\tau_h\tau_h, \mu\mu\tau_\mu\tau_h, \mu\mu\tau_e\tau_h, ee\tau_h\tau_h, ee\tau_e\tau_h, ee\tau_\mu\tau_h, \mu\mu\tau_\mu\tau_e, ee\tau_\mu\tau_e
```

- Backgrounds:
 - ZZ (Measured from simulation)
 - WZ and Z associated with jets (Measured from data using Fake Rate method)
- Selection Strategy:
 - Leading Z selection
 - Leptons identification and isolation
 - Phase space requirements
 - $\,\tau$ discriminators against e's and μ 's
 - τ isolation
- Control from data:
 - Leptons (e, μ , τ) related efficiencies
 - Background estimation

- Lepton identification and isolation:
 - Tight Particle Flow (PF) μ selection for $\mu 's$
 - MVA electron Id for e's
 - Relative PF Isolation using " ρ with effective area($\pi \Delta R^2$)" correction for pile up, for both e's and μ 's

$$\Delta R = \sqrt{(\eta_{lepton} - \eta_{isol.particle})^2 + (\phi_{lepton} - \phi_{isol.particle})^2}$$
$$I_{rel}^{PF}(\rho) = \frac{\sum \left(p_T^{charged} + max(E_T^{\gamma} + E_T^{neutral} - \rho.A_{eff}, 0.0) \right)}{p_T^l}$$

- Hadron Plus Strip (HPS) τ:
 - Combined isolation with ${\it \Delta}eta$ correction for pile up

$$I^{PF}(\Delta\beta) = \sum \left(p_T^{charged} + max(E_T^{\gamma} + E_T^{neutral} - 0.0729 \times E_T^{PU}, 0.0) \right)$$

• Veto for 4 lepton overlap removal

– Rejection of the event if an additional loose e, μ or τ is found

Event selection

• Leading $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$:

- $P_T > 20$ and 10 GeV respectively for leading and sub-leading leptons
- $|\eta|$ < 2.4 and 2.5 for μ 's and e's respectively
- Relative PF Isolation < 0.25
- $60 < m_{Z1} < 120 \text{ GeV/c}^2$

• Sub-leading $Z \rightarrow \tau_l \tau_h$:

- $P_T > 10$ and 20 GeV respectively for τ_l and τ_h
- $\quad |\eta| < 2.4 \text{ and } 2.5 \text{ for } \tau_{\mu} \text{ and } \tau_{e} \\ \text{respectively and } 2.3 \text{ for } \tau_{h}$
- Relative PF Isolation < 0.15 and 0.10 for τ_{μ} and τ_{e}
- HPS medium isolation with $\Delta\beta$ correction
- $30 < m_{Z2} < 90 \text{ GeV/c}^2$
- Sub-leading $Z \rightarrow \tau_h \tau_h$:
 - $P_T > 20 \text{ GeV}$ for both τ_h
 - $|\eta|$ < 2.3 for both τ_{h}
 - HPS tight isolation with $\Delta\beta$ correction
 - $30 < m_{Z2} < 90 \text{ GeV/c}^2$
- Sub-leading $Z \rightarrow \tau_{l} \tau_{l}$:
 - $P_T > 10 \text{ GeV}$ for both τ_I
 - $|\eta|$ < 2.4 and 2.5 for τ_{μ} and τ_{e}
 - Relative PF Isolation < 0.25 for both τ_{μ} and τ_{e}

$$- 0 < m_{Z2} < 90 \text{ GeV/c}^2$$

Reducible backgrounds estimation

Jet to τ FR: using $\mu\mu\tau\tau$ and $ee\tau\tau$

- Definition of control region:
- Same leading Z selection (as for baseline analysis)
- Sub-leading Z Selection:
 - Same charge for both $\tau 's$
 - No mass window
 - τ pT > 10 GeV and $|\eta|$ <2.3
 - Decay mode, loose e and $\boldsymbol{\mu}$ discrimination
 - No isolation requirement for $\boldsymbol{\tau}$
- Fake Rate (FR) = No. of jets passing τ isolation / Total jets
- FR has been measured for both HPS medium and tight Isolation.

Control region and Jet to τ FR measurement

$$F(p_T(\tau)) = C_0 + C_1 e^{C_2 p_T(\tau)}$$

Jet to e and μ FR measurements

Using $\mu\mu\mu\tau$ and $ee\mu\tau$ for μ 's Using eeet and $\mu\mue\tau$ for e's

- Definition of control region:
- Same leading Z selection (as for baseline analysis)
- Sub-leading Z Selection:
 - Same charge for $e(\mu)$ and τ
 - No mass window
 - No isolation requirement for τ and $e(\mu)$
 - e(μ) identification and acceptance requirements
 - For WZ+Jets rejection
 - m_T (jet, PFMET) < 30 GeV and MET < 20 GeV
- FR = No. of jet passing $e(\mu)$ isolation / Total jets

FR application to signal region

- We consider two categories for background events in the signal region (*Ns*) with OS leptons from sub-leading Z:
 - Category 0: one Z + two fakeable objects
 - Category 1: one Z + one real lepton + one fakeable object

 $N_B^{Tot} = N_0 \cdot F_1 \cdot F_2 + (N_{1a} - N_0 \cdot F_2) \cdot F_1 + (N_{1b} - N_0 \cdot F_1) \cdot F_2 = N_{1a} \cdot F_1 + N_{1b} \cdot F_2 - N_0 \cdot F_1 \cdot F_2$

• As an example: total estimation for $\mu\mu e\tau$ final state @ 8TeV

Category 0: both e and τ are anti-isolated	Category 1a: e is anti-Isolated and τ is isolated	Category 1b: e is Isolated and τ is anti-isolated	
■# Events = 198	■# Events = 5	■# Events = 18	
Total estimation = 0.6	Total estimation = 0.88	Total estimation = 0.4	
$N_B = \frac{N_S F_1 F_2}{1 - F_1 F_2}$	$N_B = \frac{N_S F 1}{1 - F 1}$	$N_B = \frac{N_S F 2}{1 - F 2}$	

Total background = (0.88 + 0.4) - 0.6 = 0.68

Higgs Hunting Workshop, July 18-20, 2012

Final results

5.05 fb⁻¹ @ vs=7TeV + 5.26 fb⁻¹ @ vs=8TeV

Decay	N_{ZZ}^{est}	Other	Total	m_H	Observed
channel		backgrounds	backgrounds	$200 \pm 15 \text{ GeV}$	
$\mu\mu\tau_h\tau_h$	1.47 ± 0.02	2.00 ± 0.30	3.47 ± 0.30	0.36 ± 0.01	2
$ee au_h au_h$	1.38 ± 0.02	1.62 ± 0.29	3.00 ± 0.29	0.33 ± 0.01	2
$ee au_e au_h$	1.58 ± 0.02	1.20 ± 0.36	2.78 ± 0.36	0.38 ± 0.01	8
$\mu\mu\tau_e\tau_h$	1.50 ± 0.02	1.25 ± 0.47	2.75 ± 0.47	0.39 ± 0.01	1
$\mu \mu \tau_{\mu} \tau_{h}$	1.96 ± 0.03	0.69 ± 0.17	2.65 ± 0.17	0.49 ± 0.01	0
$ee au_{\mu} au_{h}$	1.77 ± 0.02	0.82 ± 0.18	2.59 ± 0.18	0.45 ± 0.01	2
$ee au_e au_\mu$	1.14 ± 0.02	0.84 ± 0.41	1.98 ± 0.41	0.28 ± 0.01	2
$\mu\mu\tau_{\mu}\tau_{e}$	1.25 ± 0.02	0.47 ± 0.26	1.72 ± 0.26	0.33 ± 0.01	3
TOTAL	12.07 ± 0.06	8.89 ± 0.91	20.96 ± 0.91	3.01 ± 0.03	20

Event display

• $ee\tau_e \tau_h$ event in data @ Vs = 8TeV (Invariant mass = 200.4 GeV)

Systematic uncertainties

Source	Uncertainty
Luminosity measurements 2011	2.2%
Luminosity measurements 2012	5.0%
Trigger efficiency	1.5%

Systematics uncertainties common to all channels

Channel specific systematic uncertainties

Channel	μ ID/Iso	e ID/Iso	τ_h ID/Iso	$ au_{ES}$
$\mu\mu\tau_h\tau_h$	1.01/1.01	-	1.1	1.04
$ee au_h au_h$	-	1.02/1.01	1.1	1.04
$ee au_e au_h$	-	1.04/1.02	1.06	1.03
$\mu\mu\tau_e\tau_h$	1.01/1.01	1.02/1.01	1.06	1.03
$\mu\mu\tau_{\mu}\tau_{h}$	1.02/1.02	-	1.06	1.03
$ee au_{\mu} au_{h}$	1.01/1.01	1.02/1.01	1.06	1.03
$ee au_e au_\mu$	1.01/1.01	1.04/1.02	-	-
$\mu\mu\tau_{\mu}\tau_{e}$	1.02/1.02	1.02/1.01	_	_

$2l2\tau$ mass spectrum and limits @ 95% CL

 Observed limit is ~2 to 6 times the SM expectation in the range of 190 < m_H < 600 GeV

Conclusions

- H→ZZ→Ilττ analysis has been presented for (5.05 fb⁻¹ @ 7 TeV + 5.26 fb⁻¹ @ 8TeV) data
- No evidence found for a significant deviation from expected backgrounds
- Limit has been set @ 95 % CL for the mass range of $190 < m_H < 600 \text{ GeV/c}^2$
 - ~2 to 6 times the Standard Model expectation

Back Up

Data Samples and Triggers

• Fully certified data has been processed

✓ 2011(5.05 fb⁻¹) and 2012(5.26 fb⁻¹)

Runs	Dataset	Primary dataset	Year
160431-173692	Run2011A-16Jan2012-v1	DoubleMu / DoubleElectron	2011
175832-180252	Run2011B-16Jan2012-v1	DoubleMu / DoubleElectron	2011
190450-193686	Run2012A-PromptReco-v1	DoubleMu / DoubleElectron	2012
193752-197044	Run2012B-PromptReco-v1	DoubleMu / DoubleElectron	2012
190782-190949	Run2012A-23May2012-v2_May23ReReco	DoubleMu /DoubleElectron	2012

• Triggers used:

HLT path	Run range	Year		
$\mu\mu$ channels	$\mu\mu$ channels			
HLT_DoubleMu7	160431-163869	2011		
HLT_Mu13_Mu8	165088-178380	2011		
HLT_Mu17_Mu8	178420-180252	2011		
HLT_Mu17_Mu8	190450-190949	2012		
HLT_Mu17_TkMu8	190450-190949	2012		
ee channels				
HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL	160432-180252	2011		
Ele8_CaloIdL_CaloIsoVL_TrkIdVL_TrkIsoVL	/	V		
HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL	190450-197044	2012		
Ele8_CaloIdL_CaloIsoVL_TrkIdVL_TrkIsoVL				
HLT_Ele17_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL_	190450-197044	2012		
Ele8_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL				

Simulation Samples

Process	MC	$\sigma_{(N)NLO}$		Comments and sample name
	generator	7 TeV	8 TeV	
Higgs boson $H \rightarrow ZZ$ -	$\rightarrow 4\ell$			
$gg \rightarrow H$	POWHEG	[1-20] fb	[1.2-25] fb	$m_{\rm H} = 110-1000 {\rm GeV}/c^2$
$VV \rightarrow H$	POWHEG	[0.2-2] fb	[0.3-25] fb	$m_H = 110-1000 \text{GeV}/c^2$
ZZ continuum				
$q\bar{q} \rightarrow ZZ \rightarrow 4e(4\mu, 4\tau)$	POWHEG	15.34 fb	76.91 fb	ZZTo4e(4mu,4tau)
$q\bar{q} \rightarrow ZZ \rightarrow 2e2\mu$	POWHEG	30.68 fb	176.7 fb	ZZTo2e2mu
$q\bar{q} \rightarrow ZZ \rightarrow 2e(2\mu)2\tau$	POWHEG	30.68 fb	176.7 fb	ZZTo2e(2mu)2tau
$gg \rightarrow ZZ \rightarrow 2\ell 2\ell'$	gg2ZZ	3.48 fb	4.47 fb	GluGluToZZTo2L2L
$gg \rightarrow ZZ \rightarrow 4\ell$	gg2ZZ	1.74 fb	2.24 fb	GluGluToZZTo4L
Other di-bosons		182223		1011
WW $\rightarrow 2\ell 2\nu$	Madgraph	4.88 pb	5.995 pb	WWTo2L2Nu
$WZ \rightarrow 3\ell\nu$	Madgraph	0.868 pb	1.057 pb	WZTo3LNu
$t\bar{t}$ and single t				
$t\bar{t} \rightarrow \ell^+ \ell^- \nu \bar{\nu} b\bar{b}$	POWHEG	17.32 pb	23.64 pb	TTTo2L2Nu2B
t (s-channel)	POWHEG	3.19 pb	3.89 pb	T_TuneXX_s-channel
ℓ (s-channel)	POWHEG	1.44 pb	1.76 pb	Tbar_TuneXX_s-channel
t (t-channel)	POWHEG	41.92 pb	55.53 pb	T_TuneXX_t-channel
ł (t-channel)	POWHEG	22.65 pb	30.00 pb	Tbar_TuneXX_t-channel
t (tW-channel)	POWHEG	7.87 pb	11.77 pb	T_TuneXX_tW-channel-DR
Ī (tW-channel)	POWHEG	7.87 pb	11.77 pb	Tbar_TuneXX_tW-channel-DR
Z/W + jets (q = d, u, s)	, c, b)			
W + jets	MadGraph	31314 pb	36257.2 pb	WJetsToLNu
Z + jets	MadGraph	3048 pb	3503.7 pb	DYJetsToLL
QCD inclusive multi-je	ets, binned p_1^n	nin		
$b, c \rightarrow e + X$	PYTHIA			QCD_Pt-XXtoYY_BCtoE
EM-enriched	PYTHIA			QCD_Pt-XXtoYY_EMEnriched
MU-enriched	PYTHIA			QCD_Pt-XXtoYY_MuPt5Enriched

HPS τ algorithm

- HPS algorithm uses PF jet (Δ R=0.5) and reconstruct τ decays inside jet
 - ✓ Selection of highest P_T track
 - ✓ Reconstruction of π^0 from electromagnetic particle clusters in ECAL strips
 - ✓ Associated distances for η = 0.05 & for Φ = 0.2 radians

Important aspects:

- ✓ Strips with $E_T > 1$ GeV are considered
- ✓ A mass constraint of (strip mass matches to π^0 mass + hadron mass) = ρ (770) is applied
- ✓ Isolation is calculated as energy sum of particles in ΔR =0.5 cone
- ✓ For PU $\Delta\beta$ correction, energy sum of particles in Δ R=0.8 cone is used

Decay Mode	Branching ratio(%)
$\tau^- ightarrow \mu^- \bar{\nu_\mu} \nu_\tau$	17.4
$\tau^- \rightarrow e^- \bar{\nu_e} \nu_{\tau}$	17.9
$\tau^- \rightarrow h^- \nu_{\tau}$	11.6
$\tau^- \rightarrow h^- \pi^0 \nu_{\tau}$	26.0
$\tau^- \rightarrow h^- \pi^0 \pi^0 \nu_{\tau}$	10.8
$\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$	9.8
$\tau^- \rightarrow h^- h^+ h^- \pi^0 \nu_{\tau}$	4.8
other	1.7

Higgs Hunting Workshop, July 18-20, 2012

HPS τ Isolation and discriminators against e's and μ 's

- In Isolation cone of $\Delta R=0.5$
 - All charged particles and neutral particles with $P_T > 0.5$ GeV are considered
 - HPS Tight Isolation: Iso. < 0.8 GeV
 - HPS Medum Isolation: Iso. < 1 GeV
 - HPS Loose Isolation: Iso. < 2 GeV
- μ discriminator:
 - $\,\mu$ Loose: Leading track should not have μ chamber hits
 - μ Medium: Leading track should not match with global/ tracker μ track
 - μ Tight: μ Medium + μ should not have large energy deposits in ECAL and HCAL
- e Discrimination Based on PF e- π MVA (ξ):
 - e Loose: ξ < 0.6</p>
 - e Medium: ξ < -0.1 and not 1.4442 < $|\eta|$ < 1.566
 - e Tight: ξ < -0.1 and not 1.4442 < $|\eta|$ < 1.566 and Brem pattern cuts

τ Performance

