••• Mass measurement in H \rightarrow $\gamma\gamma$ in ATLAS ••••

Yohei Yamaguchi (The University of Tokyo) on behalf of the ATLAS Collaboration Higgs Hunting 2013 25th July 2013

Higgs couplings paper: https://cds.cern.ch/record/1559924

Higgs to Diphoton conf. note: https://cds.cern.ch/record/1523698

■■• Introduction ·•■

- Higgs discovery in July 2012 → ATLAS measures its properties
- m_H is measured in H $\rightarrow \gamma\gamma$ and ZZ \rightarrow 4l channels
- H → γγ channel has an excellent resolution on m_H
 - narrow mass peak
 - 80 (2011, 7TeV) + 395 (2012, 8TeV) expected signal events

Higgs Mass Measurement

- Event selection and categorization
 - 2 tightly identified and isolated photons ($E_T > 40/30 \text{ GeV}$, $|\eta| < 2.37 \text{ w/o crack}$)
 - 10 (7TeV) and 14 (8TeV) categories: better mass determination ~ 10%

Signal modeling

- function = CrystalBall + Gaussian
- mass resolution is 1.6 GeV on average and varies ~ 1 GeV according to photon conversion status and η region

BG modeling

- BG is obtained from fit to m_{vv} distribution in data
- function is different for each category (e.g. 4th order Bernstein polynomial for inclusive)

Profile likelihood

- likelihood is calculated from (S+B) fit to m_{yy} distribution

$$-2\ln\lambda\left(m_H
ight) = -2\lnrac{L\left(m_H,\hat{\hat{\mu}},\hat{\hat{ heta}}
ight)}{L\left(\hat{m_H},\hat{\mu},\hat{ heta}
ight)}$$
 m_H : Higgs mass, μ : signal strength (free) $heta$: Nuisance Parameters

Results ·--

Red line shows H $\rightarrow \gamma \gamma$ results

$$m_H = 126.8 \pm 0.2 \, ({\rm stat}) \pm 0.7 \, ({\rm syst}) \, {\rm GeV}$$

- Statistical uncertainty is smaller than systematic uncertainty
- Dominant systematics sources are photon energy scale uncertainties
- Systematics on the angle reconstruction is small
 - thanks to the MVA based vertex selection using "photon pointing" and tracks

electrons and photons, Uncertainty of

direction of the photons

$$m_H = 126.8 \pm 0.2 \, ({
m stat}) \pm 0.7 \, ({
m syst}) \, {
m GeV}$$

• "Method" 0.4 GeV (next slide)

• "Material" 0.4 GeV (next-to-next slide)

• PreSampler 0.1 GeV Energy scale uncertainty of the presampler

• Other 0.4 GeV e.g. Difference of lateral leakage between

"Method" Systematics 0.4 GeV

Final calorimeter energy scales are obtained from a comparison of $Z \rightarrow$ ee line-shape between data and MC

 $Z \rightarrow$ ee line-shape in 2011 data ($E_T > 25$ GeV, $|\eta| < 2.47$)

- Template Method
 - Correction factors (α) are applied to data
 - α is determined such that m_{ee} shapes in data agree with the MC histograms

$$E_{Data} \rightarrow E'_{Data} = \frac{E_{Data}}{1 + \alpha}$$

m_{ee} in data before correction after correction

Reference histogram

- Uncertainty Sources
 - QCD di-jet contamination
 - Closure test

"Material" Systematics 0.4 GeV ·••

- Energy scales of photons use extrapolation electron → photon
- If Geant4 material mapping is different from actual geometry,
 there is a mis-calibration for photons
 - shower development of photons is different from electrons

■■• Further Cross-Check ••■

- Large μ and narrow mass peak are measured in observed data set
- Affect on mass measurement?
 - $\mu = 1.6 + -0.3$

 m_H and μ are not correlated in H → γγ channel

- The best fit value of mass resolution in observed H → γγ resonance is narrower than expected by 1.8σ
 - σ: uncertainty of mass resolution
- Toy MC study shows mass resolution doesn't have influence on m_H measurement

Summary and Future Plan ·--

- Summary
 - $-H \rightarrow \gamma \gamma$ channel shows m_H:

$$m_H = 126.8 \pm 0.2 \, (\mathrm{stat}) \pm 0.7 \, (\mathrm{syst}) \, \mathrm{GeV}$$

- Dominated by systematic uncertainties
- Dominant systematics come from photon energy scale

Future plan

- New detector geometry
 - Updated by studies of material estimation
 - Improve the description of the $Z \rightarrow$ ee line-shape
- Improvement on intercalibration of each calorimeter layer
 - Reduce systematics on the presampler energy scale

■■ BG modeling ·-■

Category	Function
Inclusive	4th order Bernstein polynomial
Unconverted central, low p _{Tt}	exponential of 2nd order polynomial
Unconverted central, high p_{Tt}	single exponential
Unconverted rest, low p _{Tt}	4th order Bernstein polynomial
Unconverted rest, high p_{Tt}	single exponential
Converted central, low p_{Tt}	exponential of 2nd order polynomial
Converted central, high p_{Tt}	single exponential
Converted rest, low p_{Tt}	4th order Bernstein polynomial
Converted rest, high p_{Tt}	single exponential
Converted transition	exponential of 2nd order polynomial
Loose high-mass two-jet	single exponential
Tight high-mass two-jet	single exponential
Low-mass two-jet	single exponential
E _T ^{miss} significance	single exponential
One-lepton	single exponential

•• Comparison with H -> ZZ -> 4l ·•·

- Likelihood as a function of the mass difference, Δ m_H = m_H^{$\gamma\gamma$} m_H^{4l}
- the common mass m_H is profiled over
- the signal strength parameters $\mu_{\nu\nu}$ and μ_{4l} can be changed independently

 $\Delta m_H = 0$ hypothesis by more than observed in the data is found to be at the level of 1.5% (2.4 σ)