••• Mass measurement in H \rightarrow $\gamma\gamma$ in ATLAS •••• Yohei Yamaguchi (The University of Tokyo) on behalf of the ATLAS Collaboration Higgs Hunting 2013 25th July 2013 Higgs couplings paper: https://cds.cern.ch/record/1559924 Higgs to Diphoton conf. note: https://cds.cern.ch/record/1523698 ### ■■• Introduction ·•■ - Higgs discovery in July 2012 → ATLAS measures its properties - m_H is measured in H $\rightarrow \gamma\gamma$ and ZZ \rightarrow 4l channels - H → γγ channel has an excellent resolution on m_H - narrow mass peak - 80 (2011, 7TeV) + 395 (2012, 8TeV) expected signal events ### Higgs Mass Measurement - Event selection and categorization - 2 tightly identified and isolated photons ($E_T > 40/30 \text{ GeV}$, $|\eta| < 2.37 \text{ w/o crack}$) - 10 (7TeV) and 14 (8TeV) categories: better mass determination ~ 10% #### Signal modeling - function = CrystalBall + Gaussian - mass resolution is 1.6 GeV on average and varies ~ 1 GeV according to photon conversion status and η region #### BG modeling - BG is obtained from fit to m_{vv} distribution in data - function is different for each category (e.g. 4th order Bernstein polynomial for inclusive) #### Profile likelihood - likelihood is calculated from (S+B) fit to m_{yy} distribution $$-2\ln\lambda\left(m_H ight) = -2\ln rac{L\left(m_H,\hat{\hat{\mu}},\hat{\hat{ heta}} ight)}{L\left(\hat{m_H},\hat{\mu},\hat{ heta} ight)}$$ m_H : Higgs mass, μ : signal strength (free) $heta$: Nuisance Parameters ### Results ·-- Red line shows H $\rightarrow \gamma \gamma$ results $$m_H = 126.8 \pm 0.2 \, ({\rm stat}) \pm 0.7 \, ({\rm syst}) \, {\rm GeV}$$ - Statistical uncertainty is smaller than systematic uncertainty - Dominant systematics sources are photon energy scale uncertainties - Systematics on the angle reconstruction is small - thanks to the MVA based vertex selection using "photon pointing" and tracks electrons and photons, Uncertainty of direction of the photons $$m_H = 126.8 \pm 0.2 \, ({ m stat}) \pm 0.7 \, ({ m syst}) \, { m GeV}$$ • "Method" 0.4 GeV (next slide) • "Material" 0.4 GeV (next-to-next slide) • PreSampler 0.1 GeV Energy scale uncertainty of the presampler • Other 0.4 GeV e.g. Difference of lateral leakage between ## "Method" Systematics 0.4 GeV Final calorimeter energy scales are obtained from a comparison of $Z \rightarrow$ ee line-shape between data and MC $Z \rightarrow$ ee line-shape in 2011 data ($E_T > 25$ GeV, $|\eta| < 2.47$) - Template Method - Correction factors (α) are applied to data - α is determined such that m_{ee} shapes in data agree with the MC histograms $$E_{Data} \rightarrow E'_{Data} = \frac{E_{Data}}{1 + \alpha}$$ m_{ee} in data before correction after correction Reference histogram - Uncertainty Sources - QCD di-jet contamination - Closure test ## "Material" Systematics 0.4 GeV ·•• - Energy scales of photons use extrapolation electron → photon - If Geant4 material mapping is different from actual geometry, there is a mis-calibration for photons - shower development of photons is different from electrons ### ■■• Further Cross-Check ••■ - Large μ and narrow mass peak are measured in observed data set - Affect on mass measurement? - $\mu = 1.6 + -0.3$ m_H and μ are not correlated in H → γγ channel - The best fit value of mass resolution in observed H → γγ resonance is narrower than expected by 1.8σ - σ: uncertainty of mass resolution - Toy MC study shows mass resolution doesn't have influence on m_H measurement ## Summary and Future Plan ·-- - Summary - $-H \rightarrow \gamma \gamma$ channel shows m_H: $$m_H = 126.8 \pm 0.2 \, (\mathrm{stat}) \pm 0.7 \, (\mathrm{syst}) \, \mathrm{GeV}$$ - Dominated by systematic uncertainties - Dominant systematics come from photon energy scale #### Future plan - New detector geometry - Updated by studies of material estimation - Improve the description of the $Z \rightarrow$ ee line-shape - Improvement on intercalibration of each calorimeter layer - Reduce systematics on the presampler energy scale # ■■ BG modeling ·-■ | Category | Function | |---|-------------------------------------| | Inclusive | 4th order Bernstein polynomial | | Unconverted central, low p _{Tt} | exponential of 2nd order polynomial | | Unconverted central, high p_{Tt} | single exponential | | Unconverted rest, low p _{Tt} | 4th order Bernstein polynomial | | Unconverted rest, high p_{Tt} | single exponential | | Converted central, low p_{Tt} | exponential of 2nd order polynomial | | Converted central, high p_{Tt} | single exponential | | Converted rest, low p_{Tt} | 4th order Bernstein polynomial | | Converted rest, high p_{Tt} | single exponential | | Converted transition | exponential of 2nd order polynomial | | Loose high-mass two-jet | single exponential | | Tight high-mass two-jet | single exponential | | Low-mass two-jet | single exponential | | E _T ^{miss} significance | single exponential | | One-lepton | single exponential | ## •• Comparison with H -> ZZ -> 4l ·•· - Likelihood as a function of the mass difference, Δ m_H = m_H^{$\gamma\gamma$} m_H^{4l} - the common mass m_H is profiled over - the signal strength parameters $\mu_{\nu\nu}$ and μ_{4l} can be changed independently $\Delta m_H = 0$ hypothesis by more than observed in the data is found to be at the level of 1.5% (2.4 σ)