

Search for the SM Higgs Boson in Ivqq Final States

Huong Nguyen (UVa)
On the behalf of DØ Collaboration

The DØ detector

The Tevatron produces $p\overline{p}$ collisions at CM energy $\sqrt{s} = 1.96$ TeV

Silicon Vertex Detector

LAr-U Compensating Calorimeter

Scintillating Fiber Tracking

Muon System cover |n| <2

The Higgs Production and Decay

Dominant Production at Tevatron

g q H q Z*,W* H, Z,W*,

Main Decay Processes

$$M_{H}<(\approx 135\,GeV)$$
 $M_{H}>(\approx 135\,GeV)$

What Will 10' Get Us?

Search for the Higgs decays in **Ivqq** final state:

- > WH→Ivbb
- ≻ H→WW→lvjj
- > WH→WWW→Ivjjjj
- Splitting data in orthogonal b-tagging samples
- Optimizing the search in each subchanels

Searching for Higgs in VQQ Final State

Signatures

Two High P_⊤Jets
One High P_⊤ Lepton
Large MET

Backgrounds

W+Jets, Z+ Jets

WW, ZZ, WZ

Single-top, tt

MultiJets

Splitting Data via b-Tagging & Jet Mult.

B-Tagging: Separate b-jets and LF jets based on track and vertex information Low Mass (mH <=150 GeV)

Samples	2jet 3jet	4jet
0tag 1L	H→WW→lvjj	WWW→l∨jjjjj
1T	WH→lvbb	
2L	WH—IVDD	ttbar
2M 2T		DROS

Tagging Categories:

2T At least 2 Tight b-tagged jets 2M At least 2 Med. b-tagged jets 2L At least 2Loose b-tagged jets 1T Exact 1 tight b-tagged jet 1L Exact 1 loose b-tagged jet Otag

High Mass (mH >150 GeV)

Samples	2jet	3jet	4jet
Otag			
11	H→WW-	→lvjj	WWW→lvjjjjj
1T			
2L		ated by ttb	
2T	No. 3	ignificant	Signal

WH→ lvbb: Categorizing data via B-tagging

- * Separate b-jets from light flavor jets: BID Multivariate Analysis (bid_MVA)
- * Dividing the sample based on bid_mva output

WH→ lvbb: Improvement in Signal Sensitivity

- Improving signal isolation by further splitting tagging samples
- Optimizing MVA training for each tagging samples

2 Loose b-tags V(→h)+2 jets, Loose Double Tag DØ Preliminary, 9.7 fb⁻¹ Data 700 Multijet V+If 600 V+hf 500 single t 400 M_H=125 GeV 300 ×100) 200 100

Separate the double b-tagged final states into three tagging categories (instead of two as before) contributes 6-10% improvements in expected limits

0.2 0.4 0.6 0.8

Final Discriminant

H→WW→ Ivjj: Splitting data based on V+Jets bkg

Splitting the search sample into 2 regions: W+Jets-like and Signal-like

Improvement in Signal Sensitivity

- Splitting data into 2 orthogonal samples (W+Jets-like and Signal-like)
- Train MVA for each sample independently

Gain ~6% in signal sensitivity at all mass points by splitting the data based on W+Jets background*

10

WH→WWW→ Ivjjjj: Super MVA

- * Train MVA to discriminate signals from different groups of background
 - Higgs Signals vs. VJ (W+Jets, Z+ Jets)
 - Higgs Signals vs. VV (WW, ZZ, WZ)
 - Higgs Signals vs. MultiJets
 - Higgs Signals vs. tt̄

* Individual MVA outputs are used as input variables for the Final MVA training

WH→WWW→ Ivjjjj: Super MVA

WH→WW→ Ivjjjj

Improvement in Signal Sensitivity

The primary results (using a subset of data) shows that SuperMVA technique improves the expected limit at mH=125 GeV is ~10%₁₃

Summary

- Searching strategies for SM Higgs boson decays into lvqq final state
- Expected limits are improved by:
 - b-jets identification
 - Signal isolation
 - Super MVA technique

BACKUP

H-WW-IV jj: Splitting data via Jet Multiplicity

Motivation: Bkgs composition and signal shape depend on the Jet multiplicity

New Variable for 3jets events

$$\begin{split} &P_{j123} = P_{j1} + P_{j2} + P_{j3} \\ &\Delta\theta^{i} = \Delta\theta(P_{ji}, P_{j123}) \\ &\Delta\varphi^{i} = \Delta\varphi(P_{j1}, P_{j123}) \\ &\Delta R^{i} = \sqrt{(\Delta\theta^{i})^{2} + (\Delta\varphi^{i})} \\ &J_{123} _sigma = \frac{\sum_{i=1,2,3} \Delta R^{i} \times \left| P_{ji}^{T} \right|}{\sum_{i=1,2,3} \left| P_{ji}^{T} \right|} \end{split}$$

Triangular Cuts

Figure 8: Relation between transverse mass and $\not\!E_T$ in the **p20 electron** channel for data (top left), QCD (top middle), W + jets (top right), and three different Higgs signal masses, $m_H = 140$ GeV (bottom left), $m_H = 160$ GeV (bottom middle), and $m_H = 180$ GeV (bottom right).