Gravitational wave astronomy: from interferometric strain to astrophysics

Dr Greg Ashton

ROYAL HOLLOWAY UNIVERSITY

Summary of the talk

- Introduction and overview
- Searching for signals
- Parameter estimation
- Observational results

alk

Summary of the talk

The cartoon overview

The view from the back of the room

The detailed view of some of the field

Introduction and overview

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Gravitational waves

- Einstein (1918) "On gravitational waves"
 - Plane wave solutions
 - Travelling at *c*
 - Two polarisations
- Thorne (1980): "gravitational waves will become a powerful tool for astronomy"
- Taylor & Weisberg (1982): First unambiguous evidence for energy loss
- Abbott et al. (2016): First direct observation -35 using the LIGO interferometers -40

The gravitational wave spectrum

ROYAL HOLLOWAY UNIVERSITY OF LONDON

The gravitational wave spectrum: this talk

ROYAL HOLLOWAY

Ground-based interferometric detectors

- Basic principle: Michelson Morley interferometer
- Device to convert relative armlength differences into a changing interferometer pattern
- Define the **strain**:

$$h = \frac{L_x - L_y}{L}$$

An international network of detectors

- LIGO, Virgo, and KAGRA (LVK) are kilometre-scale interferometers
- Operate in tandem to perform gravitational wave astronomy

A more realistic estimate

- Detectors are more complicated than simple interferometers
- Taken at face value, $h = 10^{-21}$ suggests we measure the arm-length to better than the width a proton
- We measure **power output**, not mirror position
- A more realistic calculation (Saulson 1994) propagating uncertainties from the phase measurement:

$$\sigma_h = 1.6 \times 10^{-23} \left(\frac{1000 \text{ km}}{L}\right) \left(\frac{\lambda}{1064 \text{ nm}}\right)^{1/2} \left(\frac{1 \text{ kw}}{P_{\text{in}}}\right)^{1/2} \left(\frac{10 \text{ ms}}{\tau}\right)^{1/2}$$

Real detector data

- In practise, noise is frequency-dependent: can be characterised by a Power Spectral Density (PSD)
- Ideally the data consists of
 h = signal + colored Gaussian noise
- To "see" the signal, either whiten or filter

ROYAL HOLLOWAY

<u>Barsotti et al.</u>

Real detector data is full of glitches

Glitches: transient non-Gaussian noise

 10^3

 10^{+}

100

101

102

Frequency [Hz] 100

- One every few minutes •
- Impact: •
 - Reduce search sensitivity -
 - Contaminate observed signals

ROYAL OLLOWAY

Gravitational-wave data analysis

- Finn (1992):
 - Search: decide if the data contains a signal
 - **Parameter Estimation:** assume the presence of a signal and measure its parameters
- LIGO-Virgo-KAGRA:
 - Calibration, Detector Characterisation
 - Search + Parameter Estimation
 - Population studies, Tests of General Relativity, Cosmology, Lensing, ...

Searching for signals

ROYAL HOLLOWAY UNIVERSITY

Searching for signals

Given data d and "template" waveform μ , construct the signal-to-noise ratio (SNR):

$$\rho = \frac{\langle d | \mu \rangle}{\sqrt{\langle \mu | \mu \rangle}}$$

where the noise-weighted inner product: $4 \sum \alpha \left(x_{j} y_{j}^{*} \right)$

$$\langle x|y\rangle = \frac{4}{T} \sum_{j} \Re\left(\frac{x_{j}y_{j}}{P_{j}}\right)$$

T is the duration while P is the PSD.

Searching for signals

- Without glitches
 - Background is known analytically
 - Can construct an **optimal** detection statistic
 - Standard statistical decision problem
- With glitches
 - Background must be empirically estimated
 - Optimal statistic unknown
 - Need to determine a modified detection statistic $\hat{\rho}$ (see example using χ^2 approach Allen (2005))

False alarm rates

- Construct an empirical background
 - E.g., using "time slides"
 - Estimate of $P(\hat{\rho} | H_0)$ where H_0 is the null hypothesis
- Calculate a one-sided empirical p-value scaled by the search duration called the "False Alarm Rate": $FAR = \frac{1}{T}P(\hat{\rho} > \hat{\rho}'|H_0)$
- The FAR is then used to determine significance

Credit: Ewing et al (2023)

Pipelines

- The LVK runs a set of search "pipelines":
 - Modelled
 - Unmodelled
- Run in "online" and "offline" modes
- Identify events and measure significance:
 - FAR: Frequentist and fundamental for detection
 - *p*_{astro}: Bayesian modelled probability **for routine observations**

ROYA

gstLAL

PyCBC

SPIIR

MBTA

Parameter Estimation

ROYAL HOLLOWAY UNIVERSITY

Bayesian inference

ROYAL HOLLOV UNIVERS

For data d and model M with parameters θ :

$$p(\theta|M,d) = \frac{\mathcal{L}(d|\theta, M)\pi(\theta|M)}{\mathcal{Z}(d|M)}$$

with

 $\mathcal{Z}(d|M) = \int \mathcal{L}(d|\theta, M) \pi(\theta|M) \,\mathrm{d}\theta$

Generally, θ is a vector of parameters

Parameter estimation

• In gravitational-wave astronomy, we are primarily interested in **parameter estimation:**

- We generally split θ into
 - Intrinsic parameters
 - Extrinsic parameters

Parameter estimation

- Upwards of 15 parameters
- Strong correlations and curving degeneracies

Why do we use Bayesian inference?

- Framework to probe model validity
- Combine data sets in a probabilistic manner
- Natural connection with hierarchical Bayesian ٠ methods to infer the population

10

10-

20

40

100

80

60

 $m_1(M_{\odot})$

ROYAL OLLOWAY

What is the role of the prior?

- Provides a framework for assigning prior knowledge
- We **always** have some prior:
 - Can be constrained by astrophysical knowledge
 - Can be constrained by model validity ⇒ take care if the posterior is prior-informed
- For example: cosmological priors
 - Uniform in a Euclidean universe: $\pi(d_L) \propto d_L^2$
 - Uniform source-frame: $\pi(z) \propto \frac{1}{1+z} \frac{dV_c}{dz}$
- Population-weighted priors

1000

2000

3000

 d_L [Mpc]

4000

5000

6000

7000

An introduction to MCMC

- Computational Bayesian inference is required to estimate the posterior
- Let's look at the MCMC algorithm

1.0

0.8

0.6

0.4

0.2

Algorithm 5 The Metropolis MCMC algorithm to draw samples from a target $f(\theta)$ given an		
initialization point θ_0 .		
$c \leftarrow []$	▷ Initialise an empty Markov chain	
$c_0 \leftarrow [heta_0]$	\triangleright Set the first element of the to an initial value θ_0	
for i in range $(1, N_{\text{steps}})$ do	\triangleright Repeat the loop N_{steps} times	
$\theta' \sim Q(\theta' c_{i-1})$	\triangleright Draw a proposed point θ' from the proposal distribution	
$u \sim U(0, 1)$	\triangleright Draw a uniform random number u	
$\alpha \leftarrow f(\theta')/f(\theta)$	\triangleright Calculate the acceptance ratio α	
if $u \leq \alpha$ then		
$c_i \leftarrow \theta'$	\triangleright Accept the proposed point and append it to the chain	
else		
$c_i \leftarrow \theta \qquad \triangleright \operatorname{Reje}$	ect the proposed point and append the existing point to the chain	

A jump "up": always accepted

0

x

1

2

A jump "down": accept in proportion

 $c_i \leftarrow \theta$ end if end for

Stochastic sampling: MCMC

Set the target distribution to

 $f(\theta) = \mathcal{L}(d|\theta, M)\pi(\theta|M)$

Run the algorithm

Result: a set of samples from the posterior

 $p(\theta) \sim [\theta_0, \theta_1, \theta_2, \dots]$

- Able to handle many dimensions
- Able to handle arbitrary posterior distributions

Modern stochastic sampling

Two primary algorithms used to date:

- MCMC
 - Goal: estimate the posterior distribution $p(\theta|M, d)$
 - Evidence estimates possible
 - Tuned proposals needed for multi-modal and correlated posterior
- Nested Sampling
 - Goal: estimate the evidence $\mathcal{Z}(d|M) = \int \mathcal{L}(d|\theta, M) \pi(\theta|M) d\theta$
 - Posterior distributions obtained from weighted samples
 - Multi-modal by design

Stochastic sampling is slow

To analyse a typical transient gravitational-wave signal, it takes at least a few hours:

$$T \approx 5 \operatorname{hrs}\left(\frac{n_{\operatorname{samples}}^{\operatorname{eff}}}{1000}\right) \left(\frac{t_{\ell}}{10 \operatorname{ms}}\right) \left(\frac{\epsilon}{0.01\%}\right)^{-1} \left(\frac{m}{0.75}\right)^{-1} \left(\frac{n_{\operatorname{cores}}}{8}\right)^{-1}$$

But can take many weeks

How can we make it faster?

- Increase efficiency:
 - Choose better parameterizations
 - Analytically marginalize over subsets of the parameters
 - Use a better sampler
- Replace the likelihood (reduce t_{ℓ})
 - Reduced Order Quadrature
 - Heterodyning (AKA "relative binning")
- Computational parallelization:
 - HPC cluster: Nested Sampling (pbilby + dynesty)
 - Large-core-count CPUs (e.g. 128)
 - HTC cluster: run multiple MCMC chains and combine

$$T \approx 5 \operatorname{hrs}\left(\frac{n_{\operatorname{samples}}^{\operatorname{eff}}}{1000}\right) \left(\frac{t_{\ell}}{10 \operatorname{ms}}\right) \left(\frac{\epsilon}{0.01\%}\right)^{-1} \left(\frac{m}{0.75}\right)^{-1} \left(\frac{n_{\operatorname{cores}}}{8}\right)^{-1}$$

Simulation-based inference

Neural posterior density estimation:

- "Learn" a mapping from the posterior to a latent space, invert to generate posterior samples
- <u>Dax et al. (2023)</u> reproduce stochastic-sampling with two orders of magnitude improvement
- Most interesting feature: "likelihood-free"

Credit: astroautomata.com/blog/simulation-based-inference/

- 32

Observational results

ROYAL HOLLOWAY UNIVERSITY OFLONDON

We are here

observing.docs.ligo.org/plan/

ROYAL HOLLOWAY NIVERSITY

Observations to date

- O1-O3 produced nearly 100 observations
- All signals arise from CBC:
 - Binary black hole collisions
 - Binary neutron star collisions
 - Neutron star black holes
- Binary black holes:
 - Single events enable precise tests of General Relativity
 - Populations enable inferences of stellar evolution
 - + much more

Credit: LIGO-Virgo-KAGRA Collaboration / IGFAE / Thomas Dent

Confident events containing a neutron star

Neutron star + neutron star

- GW170817
- GW190425

Black hole + neutron star

- GW200115
- GW200105

GW170817

- A multi-messenger event:
 - Gravitational-waves
 - Gamma-ray Burst
 - Kilonova
- Enabled new probes of:
 - The NS equation of state
 - Cosmology
 - + more more

ROYAL HOLLOWAY

Observations to date

- Known events and public alerts (gracedb.ligo.org/latest/)
- O4a nearly doubled the number of events
- Watch out for new results in the next 24hrs..
- Virgo/KAGRA not online in O4a

Asymmetric detector sensitivities

Addition of Virgo/KAGRA in O4b:

- Improve sky localisation
- Improve overall duty cycle
- Enable more precise source parameter measurements

Detector	Horizon
LIGO	160 Mpc
Virgo	55 Mpc
KAGRA	10 Mpc

ROYAL <u>HOLLO</u>WAY

The future

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Near-term future

- LIGO, Virgo, and KAGRA will observe thousands of CBC signals
- Transition from discovery to population era
- Start to probe redshifts above 1 and the star-formation rate
- New classes of sources:
 - Stochastic gravitational-wave background
 - Isolated rotating neutron stars
 - Supernovae

- ???

The longer-term future

ROYAL

- Einstein telescope (EU)
- Cosmic Explorer (US)

HOLLOWAY

Thank you for listening!

ROYAL HOLLOWAY UNIVERSITY