

Détecteurs de perte de faisceaux nBLM pour l'ESS

Laura Segui

Présentation au Réseau Instrumentation Faisceau IN2P3 du 21/03/2024

nBLM Team at CEA

K. Aivazelis, S. Aune, M. Combet, D. Darde, D. Desforge, F. Gougnaud, T. Joannem, M. Kebbiri, C. Lahonde, P. Legou, Y. Mariette, A. Marcel, J. Marroncle, V. Nadot, **T. Papaevangelou, L.Segui**, G. Tsiledakis

Context and Motivation

Context and Motivation

Le problème :

- Perte accidentelle de faisceau dans les accélérateurs linéaires de haute puissance:
 - activation des matériaux
 → surveiller les faibles pertes de faisceau / tunning of machine
 - endommager l'accélérateur -> alarme rapide
- Maintenir les pertes <~ 1 W/m pour permettre une maintenance pratique</p>
 - ESS 5MW \rightarrow 2x10⁻⁵/m de la puissance totale (0.02 ‰)
- > Solutions pas adaptées pour la partie basse énergie d'un accélérateur de hadrons

Le positionnement du BLM est important

- > À faible énergie de faisceau, seuls les neutrons et les photons peuvent s'échapper du tube de faisceau.
- > Faibles taux de comptage car proches des seuils de réaction
- RF x-rays posent un problème pour la mesure des pertes dans les linacs.
- Efforts initialisés à SNS pour développer un détecteur sensible aux neutrons uniquement

In the second de la construction de la construct

plage dynamique dans un environnement gamma intense!

2015 Jacques Marroncle (CEA) contacted by Tom Shea (ESS)
Thomas Papaevangelou (CEA)

- expert in the use of Micromegas
- I joined the group in 2016 at the kick-off

Context and Motivation

Context: ESS-nBLM Project

Context: ESS-nBLM Project SAR Commissioning start PDR 2016 PDR 2017 2018 2019^{CDR}02^{I2019} 112022 @ ESS: April 2022 2016 2020 2015 2021 2022 conception prototyping production & installation & idea & design & testing validation commissioning Highintensenit AMANDE, RSN AFFORCE MCAD CHOBOTON UK LINACA (CERM) ORPHEE, CEA SOURCES' CEA PHI. CEA. France France France July 2016 Dec 2017 Apr. 2018 Jan. 2018 Mar. 2018 Nov-Dec. Feb. 2019 2018 Correlation rate Thermal Calibration Time Real n/y discrimination and intensity of Response • n/γ discr. neutrons Kick-off accelerator the beam conditions Cez 04/00/000

MICROMEGAS

MICROMEGAS

Y. Giomataris, P. Rebourgeard, J.P. Robert and G. Charpak, Nuc. Instrum. Meth. A 376 (1996) 29.

Micromegas:

- > Invented in 1996 at CEA Saclay by I. Giomataris
- > Micro-Pattern Gaseous Detector for **charged particles**, designed for **physics experiments**
- improved amplification structure to measure the ionization signal in a gaseous detector.
- Advanced characteristics: large-area scalability, high rate capabilities, low cost, large dynamic range, high gain, fast signals, are rad. hard, robust and stable
- Versatility: particle tracking, TPC, imaging

Micromegas Detectors

Y. Giomataris, P. Rebourgeard, J.P. Robert and G. Charpak, Nuc. Instrum. Meth. A 376 (1996) 29.

Two-region gaseous detector separated by a *Micromesh* :

nBLM Detectors Geometry

Two detector types: « fast » & « Slow »

- \checkmark The same detector and gas chamber and Electronics
- ✓ Different *neutron-to-charge* convertors
 - > Fast : mylar → (n,p) recoils from neutron scattering
 - Slow : ¹⁰B₄C → réaction (n, α) + Polyethylene moderator to increase the efficiency

Détecteur rapide $\sim 25 \times 15 \times 5 \text{ cm}^3$ $\sim 1 \text{ kg}$

Done at ESS Detector Coatings Workshop in Linköping

Détecteur lent $\sim 30 \times 30 \times 20 \text{ cm}^3$ $\sim 10 \text{ kg}$

0

°0 0°

cea

nBLM Detectors Geometry

Cage

Cage

nBLM Micromegas and FEE

Bulk Micromegas (MPGD workshop at CEA/Saclay)

- Segmented in 4 sectors to accommodate for final rates
- Small drift gap: ~2 mm. Operating in He+10% CO₂ or He + ethane, 1 atm, circulation mode (11/h/detector)

Σ

-0.01

-0.02

-0.03

FEE card and amplifiers designed at CEA

- On board FEE \rightarrow detection of small signals!
- Fast signals capability:
- Irradiation up to 200 kGy → OK!
- Adaptable card to read from 1 to 4 sectors
- Radiation hardness connectors
- Can operate in counting and charge mode

Rise Time ~ 35 ns Pulse Width ~90 ns

Threshold at 2.5 mV

[ns]

B Results R&D Phase

MonteCarlo Studies

Monte Carlo simulations have been carried out in order to:

- Optimize the detectors features
- Estimate the expected response using as input data simulated by ESS-BI (I. Dolenc-Kittlemann) of normal, uniform and dramatic loss conditions

Simulations to study the geometry

Simulated dramatic loss at ¾ DTL1 Fast nBLM placed between DTL1 and DTL2

Simulations done in GEANT4

MonteCarlo Studies : Optimize detector features

For the slow, neutrons between 0.1 eV and 100 MeV have been simulated following a double exponential decay and isotropically distributed from the external surface with an incident angle ranging from 0 to 2π

MonteCarlo Studies : Optimize detector features

MonteCarlo Studies : Optimize detector features

Experimental Results : Time Response

Immediate response \geq

Segui - Présentation au RIF

Count rate in direct correlation with beam \geq current intensity

- Delay in signal: Convolution of moderation in polyethyelene + proton beam pulse duration (90 μ s)
- \succ ~ 200 µs from simulations for a instantaneous pulse

Experimental Results : n/g discrimination

Collaboration with CEA-Saclay Radioprotection Service (SPR): AmBe 10^{11} Bq (n up to 11 MeV) 60 Co ~ 8 × 10^{10} Bq (1.17, 1.33 MeV gammas)

Background from neutron source stored close by

- The gammas follow an exponential decay as was also observed in the simulations
- For an initial neutron spectrum with several energies the separation for the fast worsen

Experimental Results : n/g discrimination

Collaboration with CEA-Saclay Radioprotection Service (SPR): AmBe 10^{11} Bq (n up to 11 MeV) 60 Co ~ 8 × 10^{10} Bq (1.17, 1.33 MeV gammas)

Relative efficiency loss with respect to different amplitude thresholds for neutrons in the **slow** module, neutrons in the **fast** module and gammas in slow module

L. Segui. et al., JINST 18 P01013 (2023).

In the case of the fast the discrimination is strongly dependent on the energy threshold and varies with the neutron energy

LINAC 4 Results

- Fast nBLM module installed between two DTLs at ~13 MeV proton region
- Final mechanics and electronics (*pre-series*)
- Gas: He + 10% CO₂
- Two data campaigns
 - November 2018
 - Understanding the detector
 - December 2018
 - Losses were produced

- Data taking with a fast oscilloscope
 - 250 Ms/s, Full bandwidth
 - With trigger of Linac4 also recorded
- Data were acquired in parallel with the final ESS nBLM system acquisition

LINAC 4 Results

Waveforms from oscilloscope

Normal operation

Provoked losses

L. Segui. et al., JINST 18 P01013 (2023).

ESS DAQ results I. Dolenc-Kittelmann et al. Phys. Rev. Accel. Beams 25, 022802 (2022)

21/03/2024 24

LINAC 4 Results

Correlation between BCT current and nBLM count rate in different beam loss scenarios

L. Segui. et al., JINST 18 P01013 (2023).

ESS DAQ results I. Dolenc-Kittelmann et al. Phys. Rev. Accel. Beams 25, 022802 (2022)

nBLM Production

nBLM Production

84 modules integrated and validated at IRFU 06/2019-02/2022

Polyethylene

Mechanics of the nBLM detector chambers (for **84 modules**) at CEA

Cez

Detector integration lab

nBLM Delivery

- 4 deliveries between 2019 and 2022
 - 2 August 2022 : Final delivery of all detectors & sub-systems

nBLM Detectors @ ESS lab

21/03/2024

nBLM Detectors Verification

- Gas leak test
- High voltage test
- Neutron irradiation
 - Detector validation lab (²⁵²Cf source weak)
 - SPR intense AmBe source (50 GBq)
 - Each detector monitored for a minimum amount of time & number of neutrons.
- Detectors not meeting required performance are repaired or replaced
- Validation Report

All detectors validated by Feb 2022

Detector validation lab b.534

Detector leak test lab b.534

Detector testing @ SPR

Rack with (from top to bottom)

- 1. MTCA+FMC card
- 2. SY4527 CAEN Crate with the HV A7030 and LV A2519
 - 3. Gas distribution chassis
 - 4. Gas main control chassis

21/03/2024

nBLM System

...not only detectors

Control System architecture at IRFU(DIS)

ESS ICS standardisation

- μTCA.4 + IOxOS CPU IFC_1410
- IOxOS ADC_3111 FMC boards

Gas system at IRFU

Cez

reading per µs)

Self -calibration of pulse amplitude and pedestal runs to check stability

charge Continuous integration is equivalent to current mode (1

- (integral) is provided

 - When pileup observed counting is based on
- The number of neutrons per µs and the total charge

- FMCs provide data continuously, every **4 ns**

Neutron to gamma discrimination is based on

- The algorithm compares the values to a threshold
 - When trigger, pulse parameters are provided

 - (TOT, amplitude, ...)

amplitude threshold

nBLM System

Acquisition logic

-60

Amplitude(mV)

Event TOT Event amplitude

. Jabłoński et al., 2019 MIXDES -, pp. 101-105,.

5 ESS Installation and first Results

nBLM at **ESS**

- 36 detectors already installed
 - 4 around MEBT (10/2021) and 8/DTL1-4 (05/2022)
- Data taking with source in tunnel to check all the line

2 pair fast+slow in MEBT

- Set-up gas system (October 2021)
- Set-up the line for MEBT-DTL1 + gas crates
- Operation in manual mode for the moment

nBLM at **ESS**

1st commissioning test @ ESS: 9th March 2022

→ May 2022: front page in ESS Confluence: First neutrons seen at ESS! In 2023 data taking during DTL4 commissioning run.

- Fast detectors : peaks consistent with activation surveys and/or simulations
- Slow detectors: pile-up! Corrections on-going

CONCLUSIONS

nBLM ESS Team

K. Aivazelis, S. Aune, M. Combet, D. Darde, D. Desforge, F. Gougnaud, T. Joannem, M. Kebbiri, C. Lahonde,
 P. Legou, Y. Mariette, A. Marcel, J. Marroncle, V. Nadot, T. Papaevangelou, L.Segui, G. Tsiledakis
 IRFU, CEA-Saclay

E. Bergman, I. Dolenc-Kittelmann, F. Dos Santos Alves, C. Derrez, S. Grishin, K. Rosengren, T. J. Shea European Spallation Source

W. Cichalewski, **G. Jablonski**, W. Jalmuzna, R. Kielbik Department of Microelectronics and Computer Science. Lodz University of Technology. Poland