Orsay, 9-12 January '07

Beyond the Standard Model

> Guido Altarelli Univ. Roma Tre CERN

By "Beyond the SM" I actually mean "Beyond what we know" in particle physics.

Since most we know is extremely well described by the SM this is mostly "Beyond the SM"

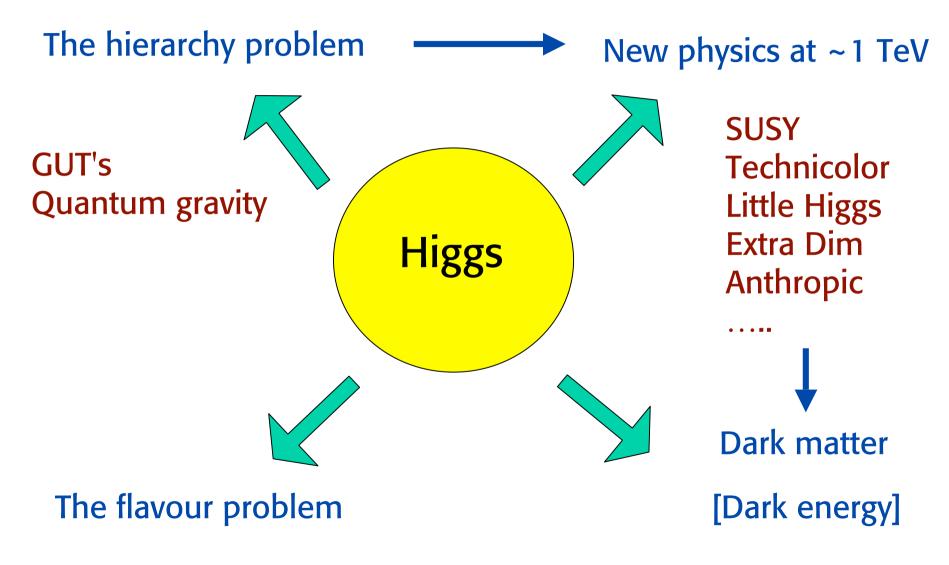
But we must not forget that a main part of the SM, the Higgs sector, is essentially not tested and its explicit form and substance is so far just a mere conjecture

Plan of the lectures

- Experimental Status of the SM
- Problems of the SM (conceptual and empirical)
- Overview of Physics Beyond the SM Supersymmetry Little Higgs Models Extra Dimensions Composite Higgs
- The most accepted BSM: GUT's
- The most established BSM: Neutrino masses

My purpose: give basic facts, describe the most interesting ideas, expand on the most realistic avenues (proceed from real to imaginary) The first collisions at the LHC are expected at the end of '07. The physics run at 14 TeV will start in spring '08.

Physics top priorities at the LHC (ATLAS&CMS):

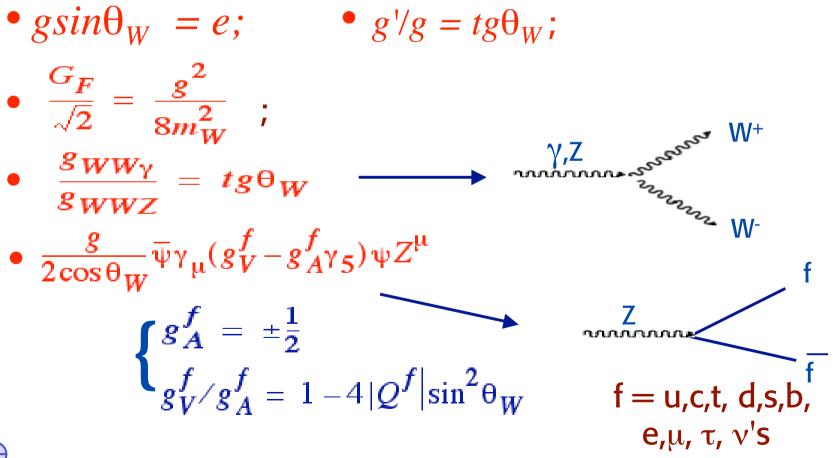

- Clarify the Higgs sector
- Search for new physics at the TeV scale
- Identify the particle(s) that make the Dark Matter in the Universe

Also:

 \oplus

- LHCb: precision B physics (CKM matrix and CP violation)
- ALICE: Heavy ion collisions & QCD phase diagram
- At this point fresh input from experiment is badly needed

The Higgs problem is central in particle physics today


The Standard EW theory: $\mathcal{L} = \mathcal{L}_{symm} + \mathcal{L}_{Higgs}$

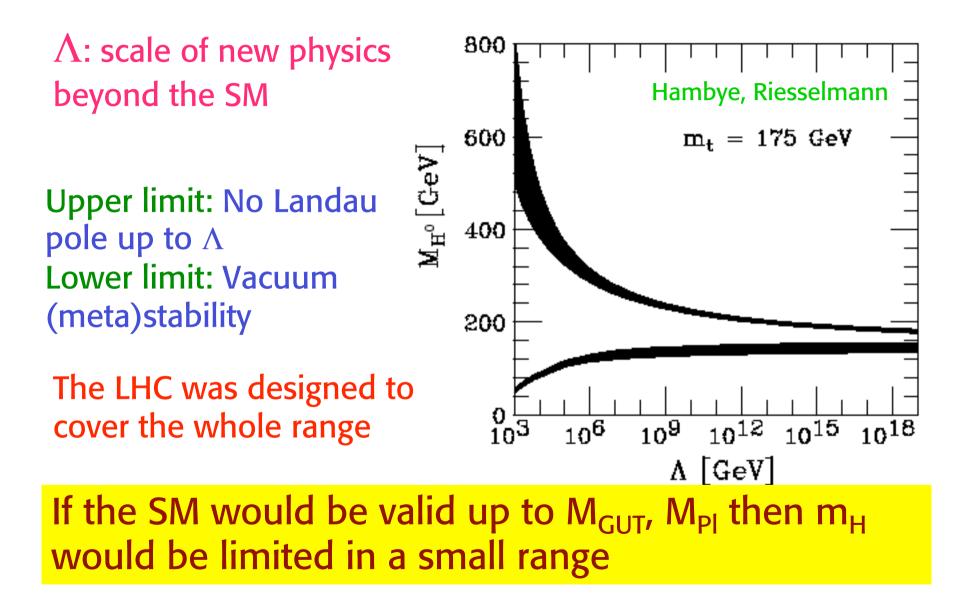
$$\mathcal{L}_{symm} = -\frac{1}{4} [\partial_{\mu} W^{A}_{\nu} - \partial_{\nu} W^{A}_{\mu} - ig \varepsilon_{ABC} W^{A}_{\mu} W^{B}_{\nu}]^{2} + \frac{1}{4} [\partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}]^{2} + \frac{1}{4} [\partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}]^{2} + \frac{1}{4} [\partial_{\mu} + g W^{A}_{\mu} t^{A} + g' B_{\mu} \frac{Y}{2}] \psi$$

$$\mathcal{L}_{Higgs} = |[\partial_{\mu} - ig W^{A}_{\mu} t^{A} - ig' B_{\mu} \frac{Y}{2}] \phi|^{2} + \frac{1}{4} V[\phi^{\dagger}\phi] + \overline{\psi} \Gamma \psi \phi + \text{h.c}$$
with $V[\phi^{\dagger}\phi] = \mu^{2} (\phi^{\dagger}\phi)^{2} + \lambda (\phi^{\dagger}\phi)^{4}$

 $\begin{array}{l} $ $ \int_{\text{symm}} : \text{ well tested (LEP, SLC, Tevatron...), } $ $ \int_{\text{Higgs}} : ~ \text{ untested} \\ $ $ \text{All we know from experiment about the SM Higgs:} \\ $ $ \text{Rad. corr's -> } m_{\text{H}} < 199 \text{ GeV (95\%cl, incl. direct search bound)} \\ $ $ \text{but no Higgs seen -> } m_{\text{H}} > 114.4 \text{ GeV (95\%cl);} \\ $ $ $ $ $ \text{Only hint } m_{\text{W}} = m_{\text{Z}} \cos\theta_{\text{W}} \longrightarrow \text{ doublet Higgs} \\ \end{array}$

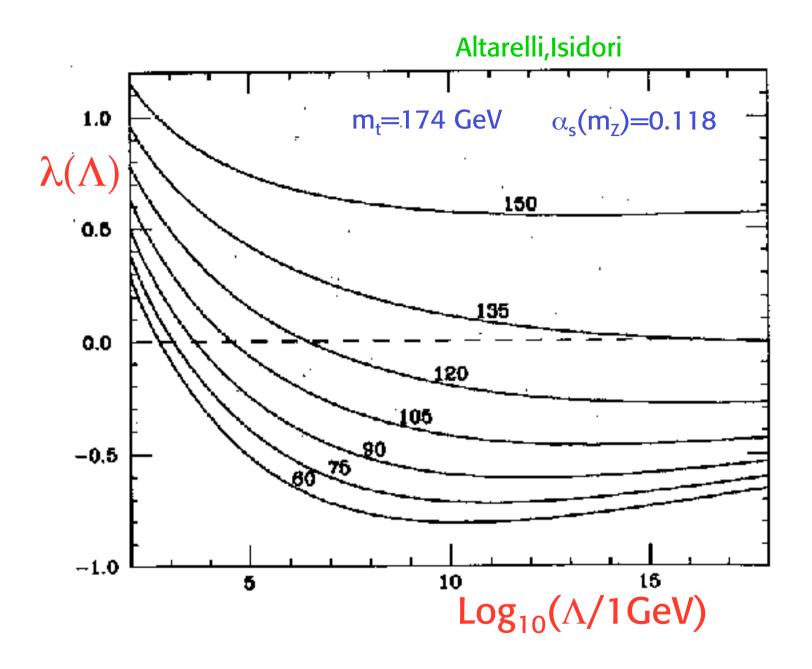
Experiments prove that all couplings are symmetricBasic tree level relations:(accuracy few per mil)[All corrected by small, computable f(mt²,logmH)radiative effects]

Yet the symmetry is badly broken in the mass spectrum!


All gauge bosons Gauge symmetry predicts **Massless** All fermions But m_{W} , $m_7 >> 0$ In spectrum: m_z ~ M_{molybdenum} ~ 97 nucleons no remnant of even atom global SU(2) symmetry! 171 4.5 GeV Also, for example, $m_{t} \neq m_{b} \neq 0$ Spontaneous symmetry breaking Currents, charges symmetric. Spectrum totally non symmetric SSB in gauge theories — Higgs mechanism

That some sort of Higgs mechanism is at work has already been established

The questions are about the nature of the Higgs particle(s)


- One doublet, more doublets, additional singlets?
- SM Higgs or SUSY Higgses
- Fundamental or composite (of fermions, of WW....)
- Pseudo-Goldstone boson of an enlarged symmetry
- A manifestation of extra dimensions (fifth comp. of a gauge boson, an effect of orbifolding or of boundary conditions....)
- Some combination of the above

Theoretical bounds on the SM Higgs mass

Higgs potential"Wrong" signClassic: $V[\phi] = -\mu^2 \phi^2 + \lambda \phi^4$ $\mu^2 > 0, \lambda > 0$ $\phi \Rightarrow \mathbf{v} + \frac{H}{\sqrt{2}} \qquad \qquad \mathbf{v}^2 = \frac{\mu^2}{2\lambda} = \frac{m_H^2}{4\lambda}$ Quantum loops: $\lambda \phi^4 \Rightarrow \lambda \phi^4 \left(1 + \gamma \ln \frac{\phi^2}{\Lambda^2} + ...\right) \xrightarrow{\mathsf{RG}} \lambda(\Lambda) \phi'^4(\Lambda)$ (Ren. group improved pert. th) $\phi' = [\exp \int \gamma(t) dt] \phi$ Running coupling $t=ln\Lambda/v$ $h_t=top$ Yukawa $\frac{d\lambda(t)}{dt} = \beta_{\lambda}(t) = const[\lambda^{2} + 3\lambda h_{t}^{2} - 9h_{t}^{4} + small]$ Initial conditions (at $\Lambda = v$) $\lambda_0 = \frac{m_H^2}{4r_s^2}$ and $h_{0t} = \frac{m_t}{v}$

Running coupling $t=\ln\Lambda/v$ $h_t=top$ Yukawa $\frac{d\lambda(t)}{d\lambda} = \beta_{\lambda}(t) = const[\lambda^2 + 3\lambda h_t^2 - 9h_t^4 + small]$ Initial conditions (at $\Lambda = v$) $\lambda_0 = \frac{m_H^2}{4r_s^2}$ and $h_{0t} = \frac{m_t}{v}$ yes Too small m_{H} ? h_{t} wins, $\lambda(t)$ decreases. **↑ V(**\$\$) But λ (t) must be >0 below Λ for the vacuum to be stable \implies m_H \geq ~130 GeV if Λ ~ M_{GUT} (or at least metastable with no lifetime $\tau > \tau_{\text{Universe}}$) Cabibbo et al, Sher, Unbound vacuum Altarelli, Isidori energy $m_H > 129.5 + 2.1 [m_t - 171.4] - 4.5 \frac{\alpha_s(m_Z) - 0.118}{0.006}$ stability $m_H(\text{GeV}) > 117 + 2.9 \left[m_t(\text{GeV}) - (175 \pm 2) \right] - 2.5 \left[\frac{\alpha_s(m_Z) - 0.118}{0.002} \right]$ metastability Isidori, Ridolfi, Strumia \oplus

Running coupling $t=\ln\Lambda/v$ $h_t=top Yukawa$ $\frac{d\lambda(t)}{dt} = \beta_{\lambda}(t) = const[\lambda^2 + 3\lambda h_t^2 - 9h_t^4 + small]$ Initial conditions (at $\Lambda=v$) $\lambda_0 = \frac{m_H^2}{4v^2}$ and $h_{0t} = \frac{m_t}{v}$

Too large m_H ? λ^2 wins, $\lambda(t)$ increases.

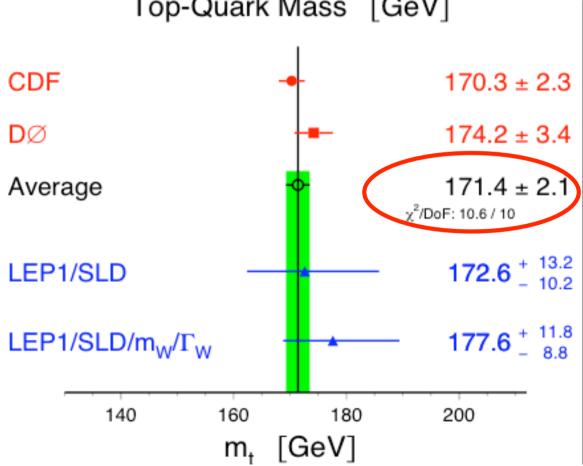
~ 600-800 GeV if ∧~o(TeV)

$$\lambda(t) \sim \frac{\lambda_0}{1 - b\lambda_0 t}$$

Landau pole

 $m_{\rm H} \leq \sim 180 \text{ GeV} \text{ if } \Lambda \sim M_{\rm GUT}$

The upper limit on m_H is obtained by requiring that no Landau pole occurs below Λ


> Rather than a bound says where non pert effects are important

Caution: near the pole pert. theory inadequate. Simulations on the lattice appear to confirm the bound Kuti et al, Hasenfratz et al, Heller et al

Precision Tests of SM

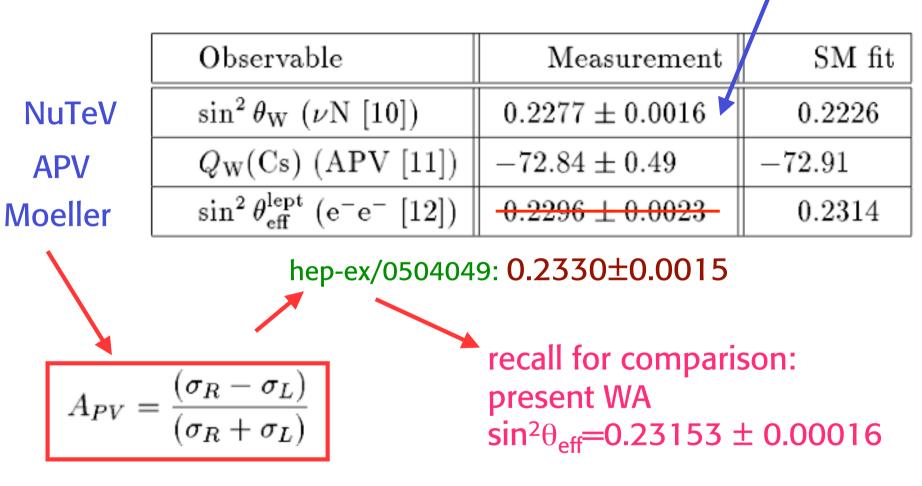
The only recent development in this domain is the decreaseof the experimental value of m_t from CDF& D0 Run IIThe error went also much down!Summer '06(Run I value: 178.0±4.3Top-Quark Mass[GeV]

This has a small effect on the quality of the SM fit and on the $m_{\rm H}$ bounds

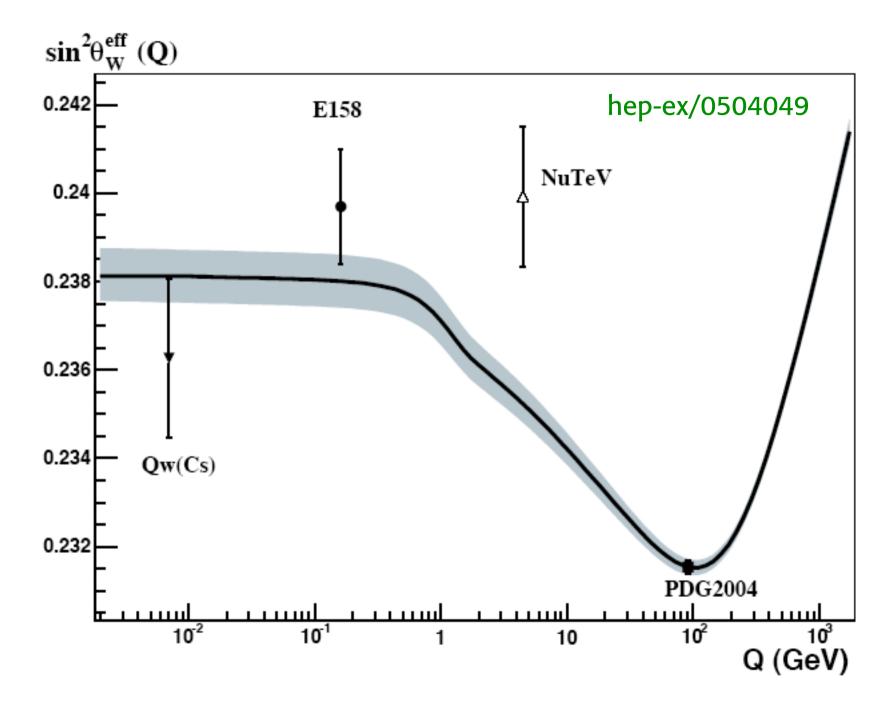
Overall the EW precision tests support the SM and a light Higgs.

The χ^2 is reasonable:

 χ^2 /ndof~17.8/13 (~16.6%)


Note: does not include NuTeV, APV, Moeller and $(g-2)_{\mu}$ $a_{\mu} \sim 3.3\sigma$ deviation?

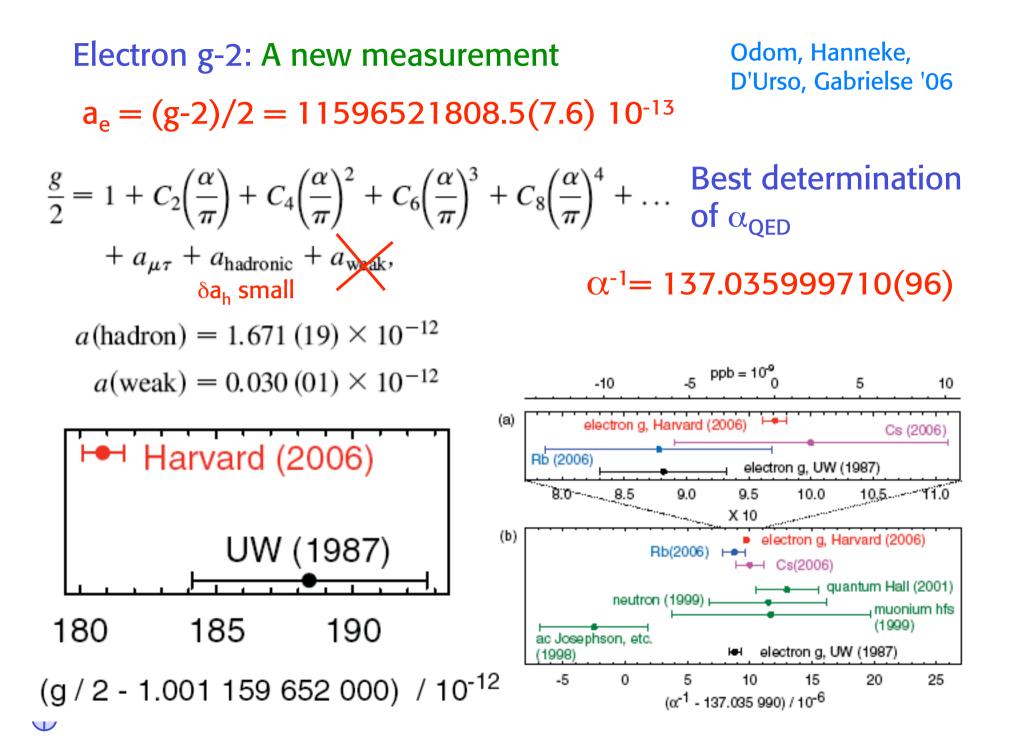
Summer '06



Low Energy Experiments

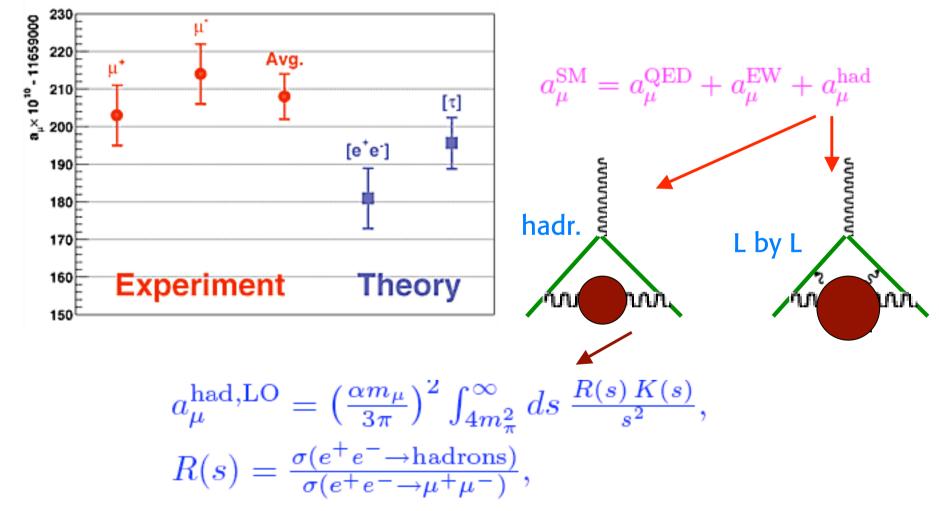
~3\sigma away!?

(g-2) not included here [no m_H implications]


 \oplus

The NuTeV anomaly probably simply arises from a large underestimation of the theoretical error (QCD analysis)

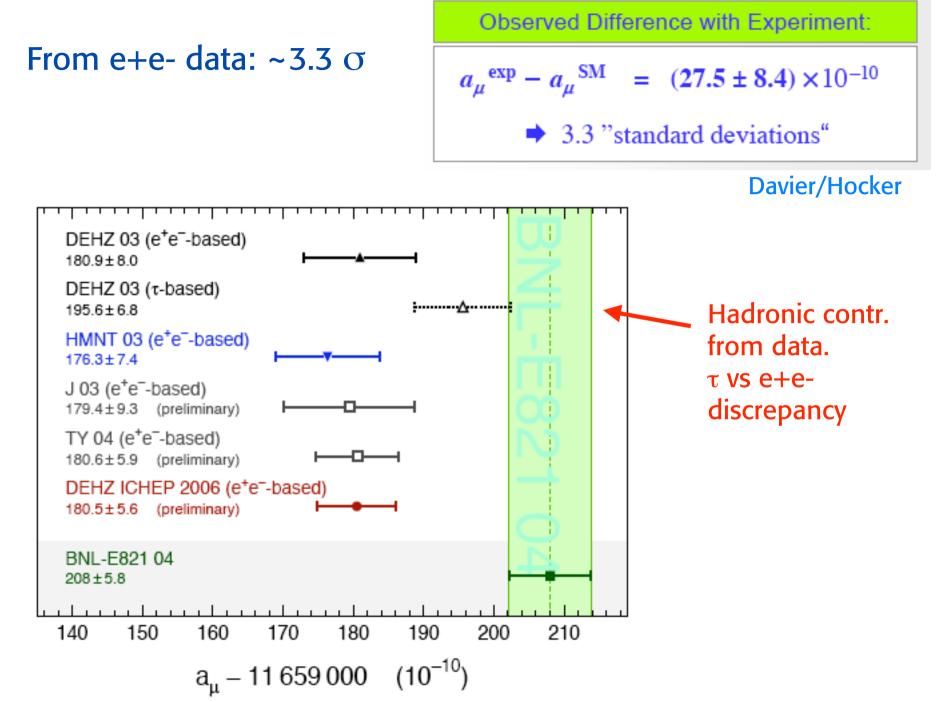
• The QCD LO parton analysis is too crude to match the required accuracy


A small asymmetry in the momentum carried by s-sbar could have a large effect
 NuTeV claims to have measured this asymmetry from dimuons. But a LO analysis of s-sbar makes no sense and cannot be directly transplanted here
 (α_s*valence corrections are large and process dependent)
 A recent CTEQ fit of s-sbar goes in the right direction.

• A tiny violation of isospin symmetry in parton distrib's can also be important.

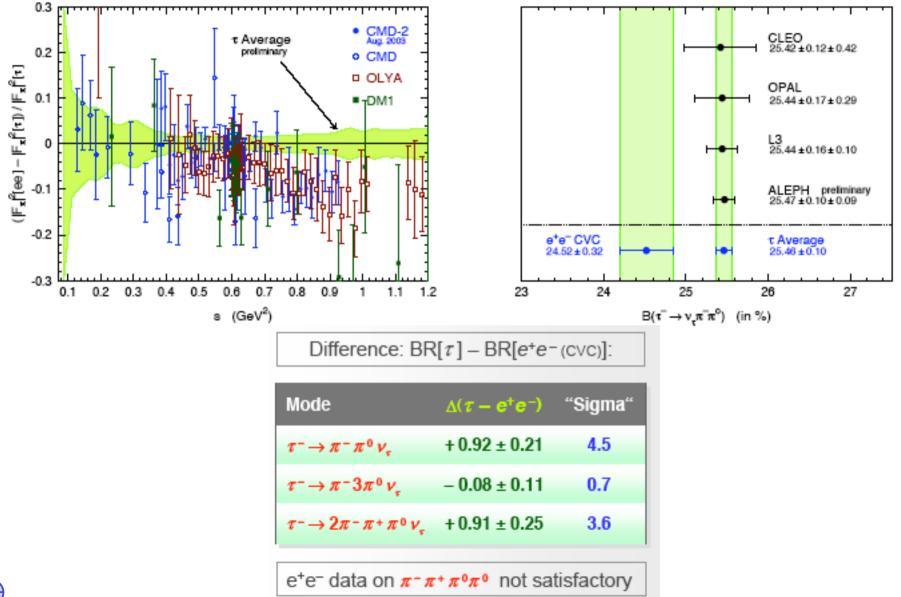
Muon g-2: more sensitive to new physics by $(m_{\mu}/m_e)^2 \sim 2 \ 10^4$

BNL '04-'06: $a_{\mu} = (11659208.0 \pm 6.3) 10^{-10}$


From the latest value of a_e (G. Gabrielse et al., 2006): $\alpha^{-1} = 137.035999710(96),$ $a_{\mu}^{\text{QED}} = (116584718.09 \pm 0.14 \pm 0.08) \cdot 10^{-11}.$

Eidelmann, ICHEP'06						
Contribution	$a_{\mu}, 10^{-10}$					
Experiment	11659208.0 ± 6.3					
QED	11658471.94 ± 0.14					
Electroweak	$15.4\pm0.1\pm0.2$	Mostly VP-LO				
Hadronic	693.1 ± 5.6	VP-NLO = -9.8 ± 0.1 LbyL = 12.0 ± 3.5				
Theory	11659180.5 ± 5.6					
Exp.–Theory	$27.5 \pm 8.4 \ (3.3\sigma)$	Knecht, Nyffeler'02 Melnikov, Veinshtein'04 Davier, Marsiano '04				
		Davier, Marciano '04				

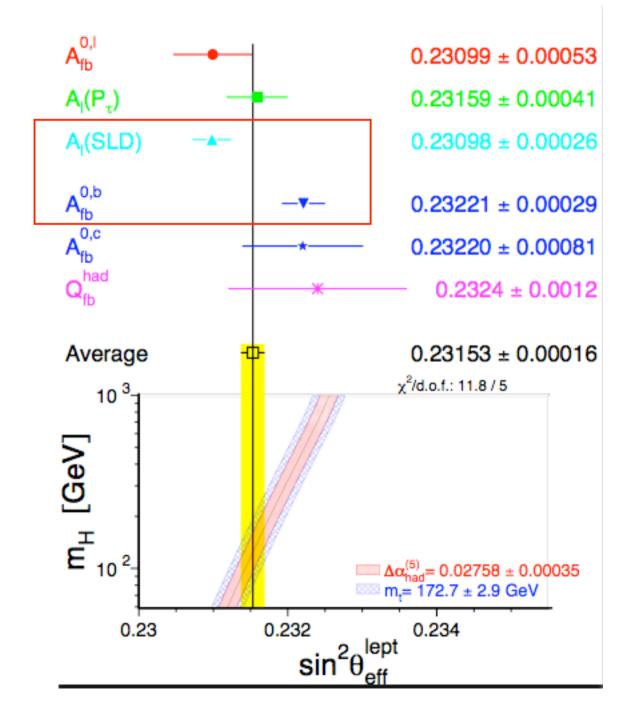
(+)


New e^+e^- Data Based Calculation of $a_\mu^{\rm had,LO}$				
\sqrt{s} , GeV	$a_{\mu}^{\rm had, LO}, 10^{-10}$	$\delta a_{\mu}^{\mathrm{had,LO}},$ %		
2π	$504.6 \pm 3.1 \pm 1.0$	73.0		
ω	$38.0 \pm 1.0 \pm 0.3$	5.5		
ϕ	$35.7 \pm 0.8 \pm 0.2$	5.2		
0.6 - 1.8	$54.2\pm1.9\pm0.4$	7.8		
1.8 - 5.0	$41.1 \pm 0.6 \pm 0.0$	6.0		
$J/\psi,\psi'$	$7.4\pm0.4\pm0.0$	1.1		
> 5.0	$9.9 \pm 0.2 \pm 0.0$	1.4		
Total	$690.9 \pm 3.9_{\rm exp} \pm 1.9_{\rm rad} \pm 0.7_{\rm QCD}$	100.0		

Higher accuracy of e^+e^- data: the $a_{\mu}^{had,LO}$ error is 4.4 (0.63%) compared to 15.3 of EJ, 1995 and 7.2 of DEHZ, 2003!

(+

Observed Difference with Experiment: $a_{\mu}^{exp} - a_{\mu}^{SM} = (27.5 \pm 8.4) \times 10^{-10}$ $\Rightarrow 3.3$ "standard deviations"

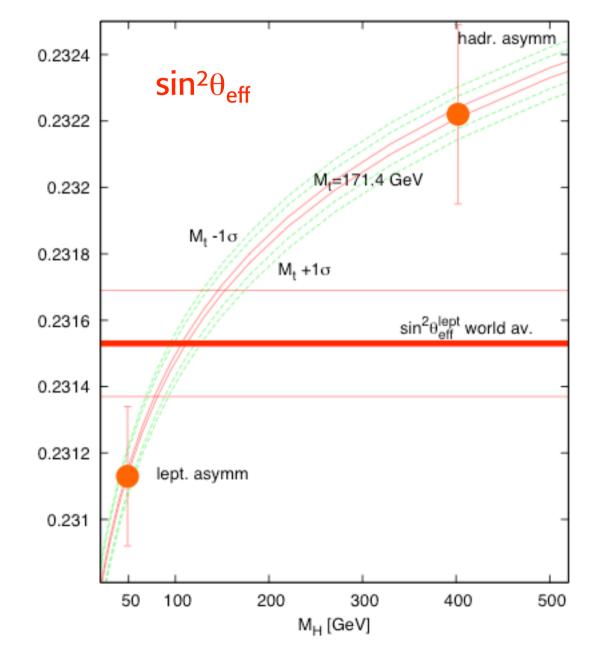


But the $e-\tau$ discrepancy is not understood: theoretical errors underestimated?

$sin^2\theta_W$

The two most precise measurements do not really match!

This unfortunate fact makes the interpretation of precision tests less sharp.

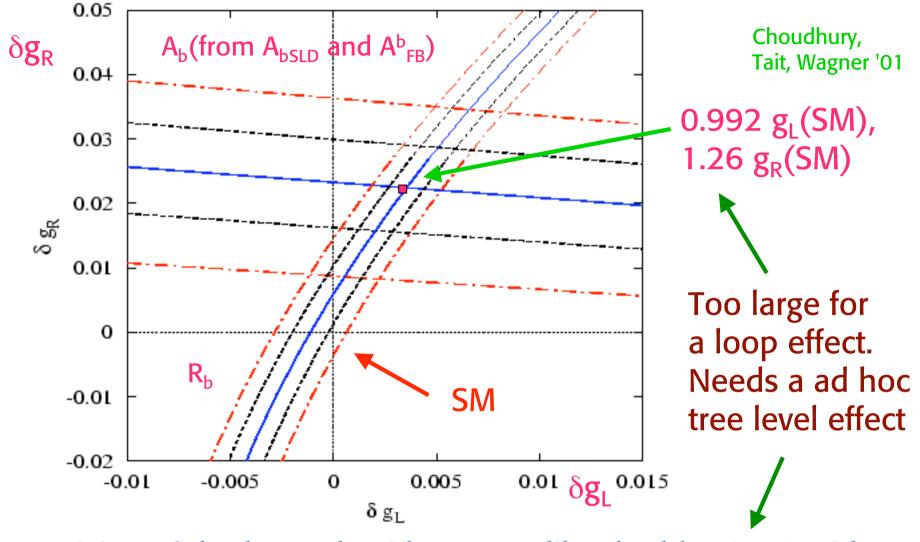


P. Gambino

Plot $sin^2\theta_{eff}$ vs m_H

Exp. values are plotted at the m_H point that better fits given m_{texp}

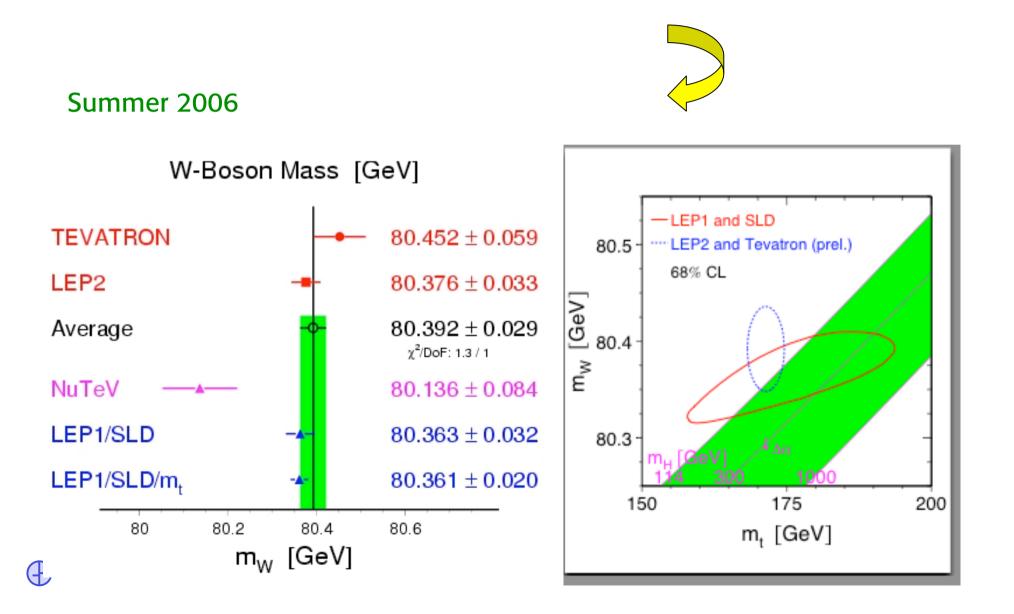
Clearly leptonic and hadronic asymm.s push m_H towards different values



A^b_{FB} vs [sin²θ]_{lept}: New physics in Zbb vertex? Must be somewhat special!! (but not impossible->) $A_{FB}^{b} = \frac{3}{4}A_{e}A_{b}$ $A_{f} = \frac{g_{L}^{2} - g_{R}^{2}}{g_{L}^{2} + g_{R}^{2}}$ For b: $g_L = g_V - g_A = -1 + \frac{2}{3}s^2 = -0.846$ $g_R = g_V + g_A = \frac{2}{3}s^2 = 0.154$ $g_L^2 \approx 0.72 >> g_R^2 \approx 0.02$ $(A_b)_{SM} \approx 0.936$

From $A_{FB}^{b}=0.0992\pm0.0016$, using $[sin^{2}\theta]_{lept}=0.23113\pm0.00021$ one obtains $A_{b}=0.881\pm0.017$

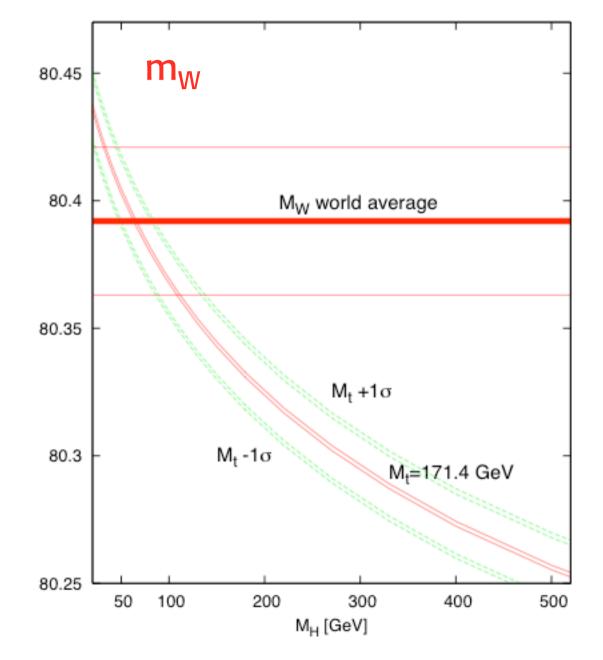
 \oplus

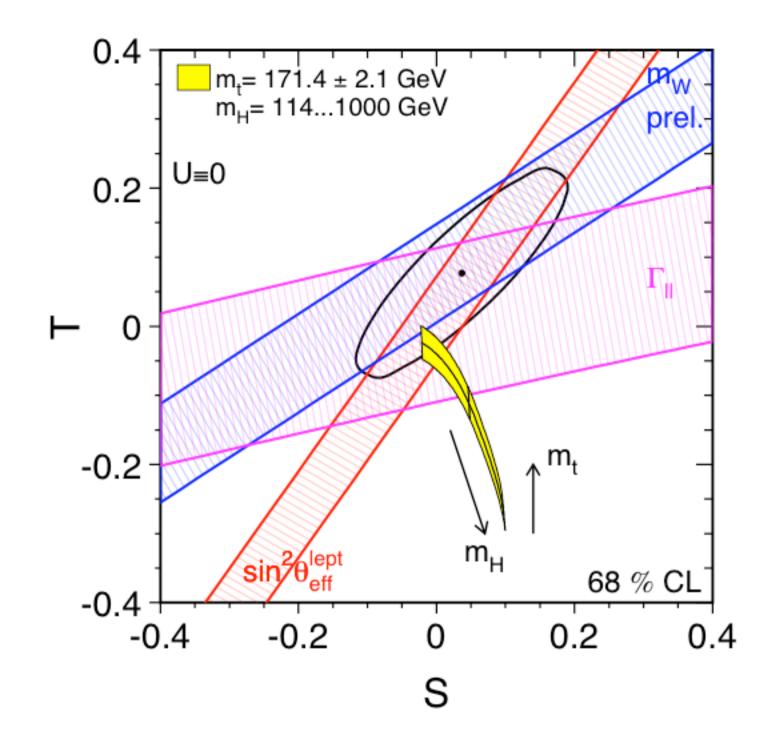

 $(A_b)_{SM} - A_b = 0.055 \pm 0.018 \rightarrow ~3 \sigma$ A large δg_R needed (by about 30%!) But note: $(A_b)_{SLD} = 0.923 \pm 0.020$, also $R_b = 0.21629 \pm 0.00066$ ($R_{bSM} \sim 0.2157$)

Mixing of the b quark with a vectorlike doublet (ω, χ) with charges (2/3, -1/3) or (-1/3, -4/3)? CTW'01 Or mixing of Z with Z' and KK recurrences in extra dim models? Agashe, Contino, Pomarol '06; Djouadi, Moreau, Richard '06

 \oplus

• The measured value of m_W is a bit high (given m_t) (now came a little bit down from 80.420 -> 80.392)


Plot m_w vs m_H


P. Gambino

m_w points to a light Higgs!

Like $[sin^2\theta_{eff}]_I$

 \oplus

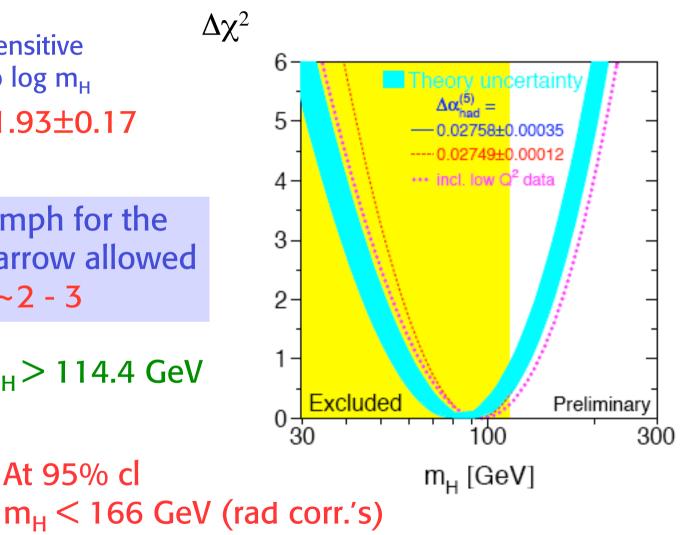
 \oplus

Fit results	Here only m _w and not m _t is used: shows m _t from rad. corr.s		Summer '06
	m _W	m _t	m _W , m _t
m _t (GeV)	177.6+12-9	171.4±2.1	171.7±2.0
m _H (GeV)	137+228-76	103+54-37	85+39-28
log[m _H (GeV)]	2.14±0.39	2.01 ± 0.19	1.93 ± 0.17
$\alpha_{s}(m_{Z})$	0.1190(28)	0.1190 (27)	0.1186 (26)
χ^2/dof	17.4/12	16.0/11	17.8/13
m _W (MeV)	80380(21)	80361(20)	80371(16)

WA: m_w=80392(29)

Rad. corr.'s predict m_t and m_w very well. May be also m_H !

Status of the SM Higgs fit


Summer '06

Sensitive Rad Corr.s -> to $\log m_{H}$ $\log_{10}m_{\rm H}({\rm GeV}) = 1.93\pm0.17$

This is a great triumph for the SM: right in the narrow allowed window $\log_{10}m_{H} \sim 2 - 3$

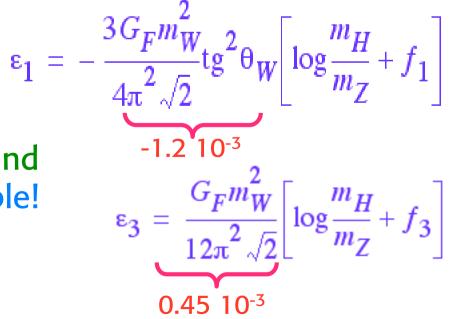
Direct search: $m_{H} > 114.4$ GeV

At 95% cl

 m_{H} < 199 GeV (incl. direct search bound)

log₁₀m_H ~2 is a very important result!!

Drop H from SM -> renorm. lost -> divergences -> cut-off Λ


 $\log m_{\rm H} \rightarrow \log \Lambda + \text{const}$

Any alternative mechanism amounts to identify the physics of Λ and the prediction of finite terms.

The most sensitive to $logm_H$ are $\varepsilon_1 \sim \Delta \rho$ and ε_3 (or T&S):

log₁₀m_H ~2 means that f_{1,3} are compatible with the SM prediction

New physics can change the bound on m_H (different f_{1,2}): well possible! Some conspiracy is needed to simulate a light Higgs

Barbieri, Hall, Rychkov 0.4 m_t= 172.7 ± 2.9 GeV m_h= 114...1000 GeV We see that to shift m_h up U=0 0.2we need a new ~E₁ physics effect that mainly 0 m_h=400-600 **G**ev pushes T up m_t -0.2 m_h 68 % CL -0.4 -0.2 -0.4 0.2 0.4 U $S \sim \varepsilon_3$

Is it possible that the Higgs is not found at the LHC?

Looks pretty unlikely!!

The LHC range is large enough: $m_H < \sim 1$ TeV the Higgs should be really heavy!

Rad. corr's indicate a light Higgs (whatever its nature)

Such a heavy Higgs would make perturbation theory to collapse nearby (violations of unitarity for $m_H > 0.8$ TeV) e.g. strongly interacting WW or WZ scattering

Such nearby collapse of pert. th. is very difficult to reconcile with EW precision tests plus simulating a light Higgs

The SM perfect agreement with the data favours forms of new physics that keep at least some Higgs light The Standard Model works very well So, why not find the Higgs and declare particle physics solved? First, you have to find it!

Because of both:

LHC

Conceptual problems

- Quantum gravity
- The hierarchy problem

and experimental clues:

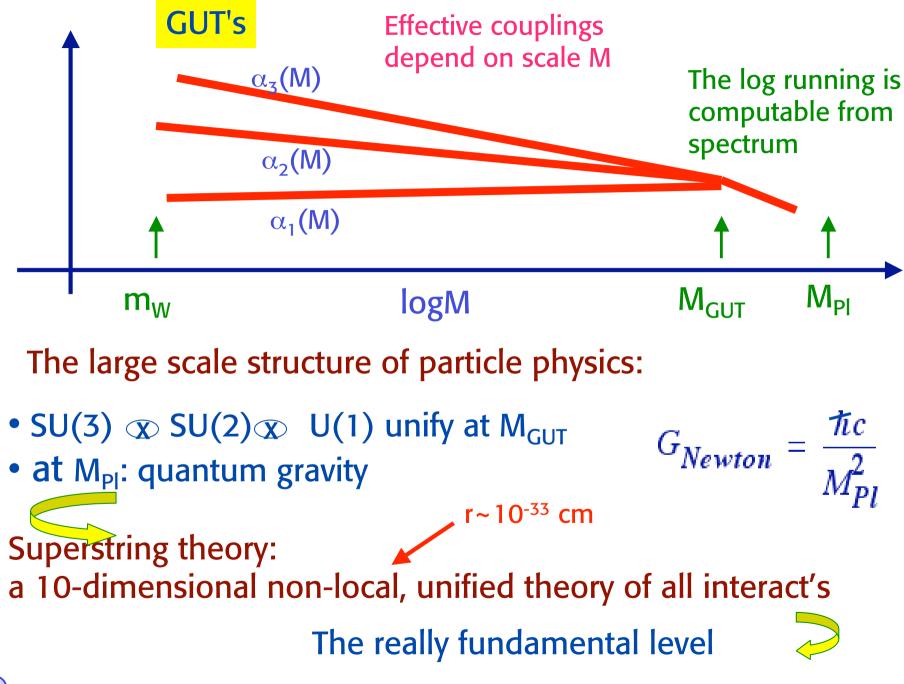
- Coupling unification
- Neutrino masses
- Baryogenesis
- Dark matter
- Vacuum energy

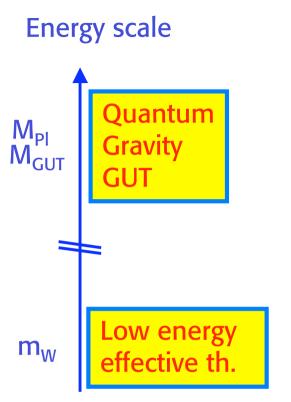
Some of these problems point at new physics at the weak scale: eg Hierarchy Dark matter

Conceptual problems of the SM

Most clearly: • No quantum gravity (M_{Pl} ~ 10¹⁹ GeV)

 But a direct extrapolation of the SM leads directly to GUT's (M_{GUT} ~ 10¹⁶ GeV)




- suggests unification with gravity as in superstring theories
- Poses the problem of the relation m_W vs M_{GUT}- M_{Pl}

Can the SM be valid up to M_{GUT} - M_{PI} ? The set of the set

The "big" hierarchy problem

Not only it looks very unlikely, but the new physics must be near the weak scale!

The hierarchy problem

Assume:

- A TOE at $\Lambda \sim M_{GUT} \sim M_{PI}$
- A low en. th at o(TeV)
- A "desert" in between

The low en. th must be renormalisable as a necessary condition for insensitivity to physics at Λ .

[the cutoff can be seen as a parametrisation of our ignorance of physics at Λ]

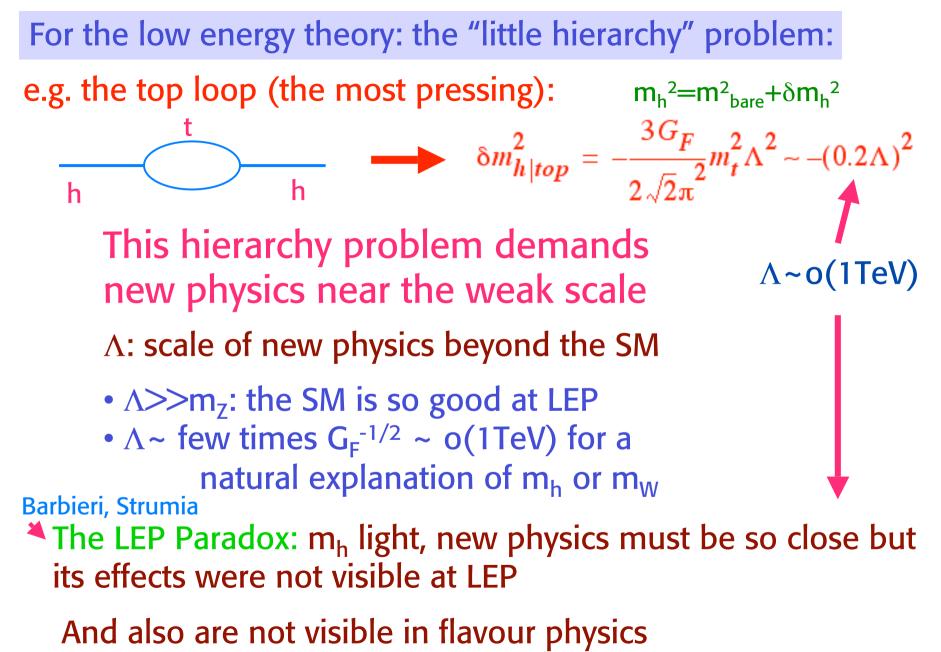
But, as Λ is so large, in addition the dep. of ren. masses and couplings on Λ must be reasonable: e.g. a mass of order m_W cannot be linear in Λ if $\Lambda \sim M_{GUT}$, M_{Pl}. With new physics at Λ the low en. th. is only an effective theory. After integration of the heavy d.o.f.:

 \mathcal{L}_i : operator of dim i

 $\mathcal{L} = O(\Lambda^2)\mathcal{L}_2 + O(\Lambda)\mathcal{L}_3 + O(1)\mathcal{L}_4 + O(1/\Lambda)\mathcal{L}_5 + O(1/\Lambda^2)\mathcal{L}_6 + \dots$

Renorm.ble part

Non renorm.ble part


In absence of special symmetries or selection rules, by dimensions $c_i f_i \sim o(\Lambda^{4-i}) f_i$

 \mathcal{L}_2 : Boson masses ϕ^2 . In the SM the mass in the Higgs potential is unprotected: $c_2 \sim o(\Lambda^2)$ \mathcal{J}_{z} : Fermion masses $\overline{\psi}\psi$. Protected by chiral symmetry and SU(2)xU(1): $\Lambda \rightarrow m \log \Lambda$ \mathcal{L}_4 : Renorm.ble interactions, e.g. $\overline{\psi}\gamma^{\mu}\psi A_{\mu}$ $\mathcal{L}_{i>4}$: Non renorm.ble: suppressed by $1/\Lambda^{i-4}$ e.g. $1/\Lambda^2 \overline{\psi} \gamma^{\mu} \psi \overline{\psi} \gamma^{\mu} \psi$

B and L conservation in SM:

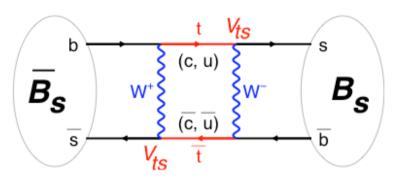
"Accidental" symmetries: in SM there is no dim. \leq 4 gauge invariant operator that violates B and/or L (if no v_R , otherwise M $v_R^T v_R$ is dim-3 $|\Delta L|=2$) The same is true in SUSY with R-parity cons.

e. g. for the $\Delta B = \Delta L = -1$ transition $u + u \rightarrow e^+ + d^$ all good quantum numbers are conserved: e.g. colour $u \sim 3$, $d \sim \overline{3}$ and $3x3 = 6+\overline{3}$ but $\frac{\lambda}{M^2} \overline{d^c} \Gamma u \overline{e^c} \Gamma u \longrightarrow dim-6$ $SU(5): p \rightarrow e^+ \pi^0$

Precision Flavour Physics

Another area where the SM is good, too good.....

- Light Higgs -> New physics at ~ few TeV
- But all effective non rinorm. vertices for FCNC have bounds above a few TeV


Apparently the SM suppression of FCNC and the CKM mechanism for CP violation is only mildly modified by new physics: an intriguing mystery and a major challenge for models of new physics

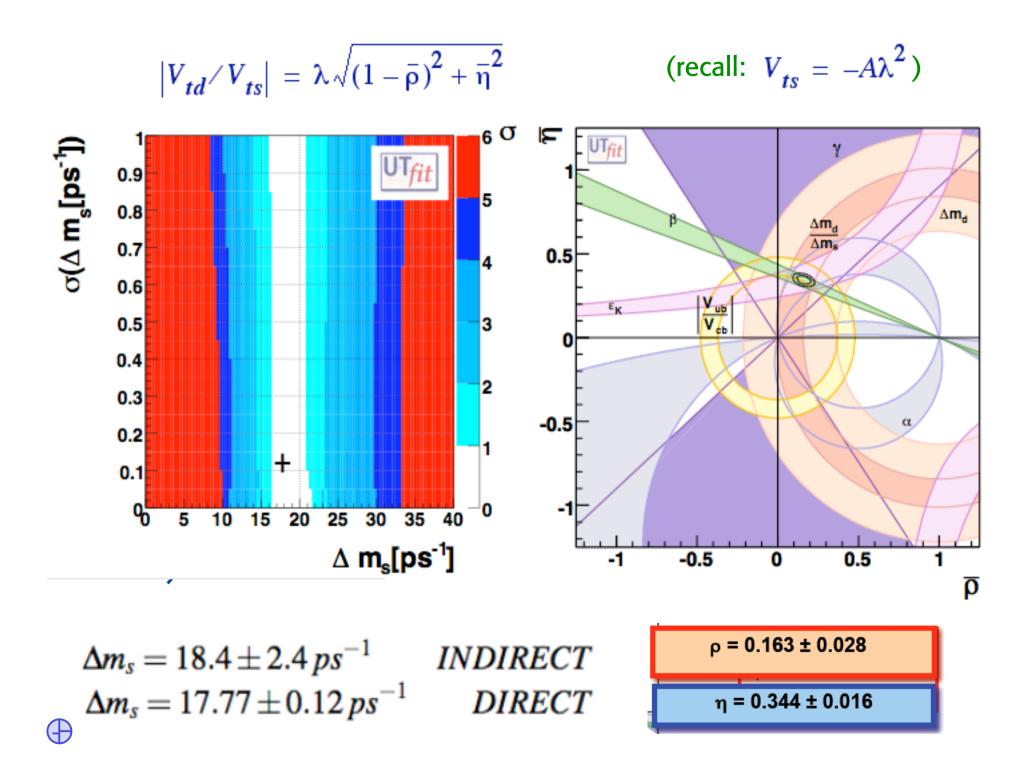
New CDF&D0 results on Δm_s

 B^0/B_s^0 mix through box diagram: $\Delta m_q \propto m_{B_q} \hat{B}_{B_q} f_{B_q}^2 |V_{tb}V_{tq}^*|^2$ q = s, dUncertainties cancel in ratio:

> $\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}$ with $\xi = 1.21 + 0.047 + 0.035$ (Okamoto, Lattice 2005)

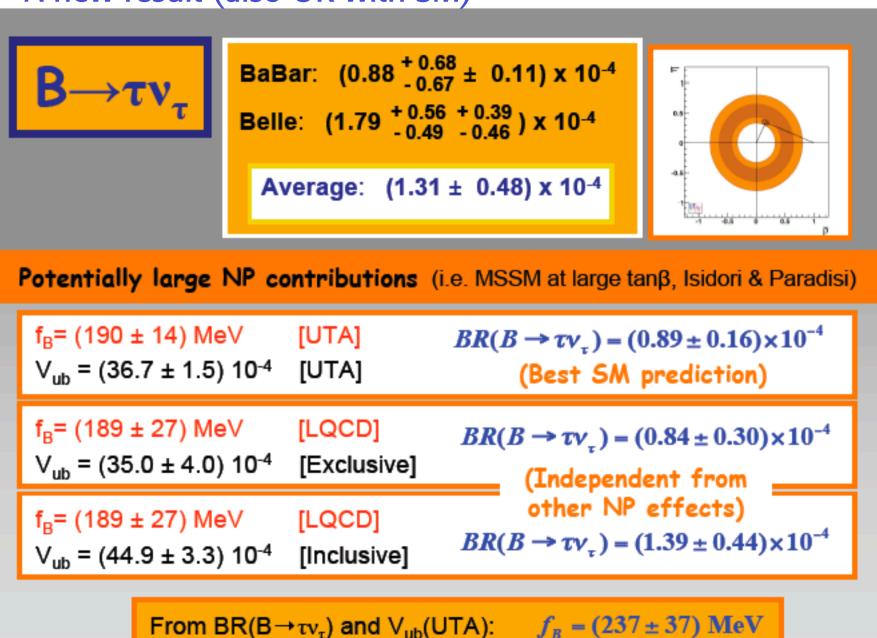
Gomez-Ceballos

D0: $\Delta m_s = 17-21 \text{ ps}^{-1} \text{ at } 90\%$


A. Abulencia et al., PRL 97 242003 (2006)

Observation of B_s Oscillations and precise measurement of Δm_s

 $\Delta m_s = 17.77 \pm 0.10~{
m (stat.)} \pm 0.07~{
m (syst.)}~{
m ps}^{-1}$ Kroll


Most precise measurement of $|V_{td}/V_{ts}|$

$$igg| rac{V_{td}}{V_{ts}} igg| = 0.2060 \pm 0.0007 \, (\Delta m_s)^{+0.0081}_{-0.0060} \, (\Delta m_d + m{\xi})$$

A new result (also OK with SM)

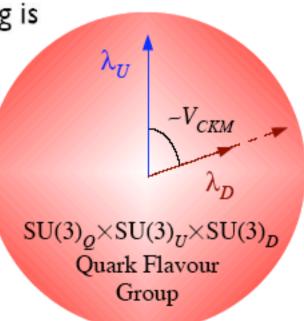
Martinelli

Adding effective operators to SM generally leads to very large Λ

$$M(B_{d}-\overline{B}_{d}) \sim c_{SM} \frac{(v_{t} V_{tb} * V_{td})^{2}}{16 \pi^{2} M_{W}^{2}} + c_{new} \frac{1}{\Lambda^{2}}$$
If $c_{new} \sim c_{SM} \sim 1$
Isidori
$$\Lambda > 10^{4} \text{ TeV for } O^{(6)} \sim (\overline{s} d)^{2}$$

$$\Lambda > 10^{3} \text{ TeV for } O^{(6)} \sim (\overline{b} d)^{2}$$

$$[K^{0}-\overline{K^{0}} \text{ mixing }]$$

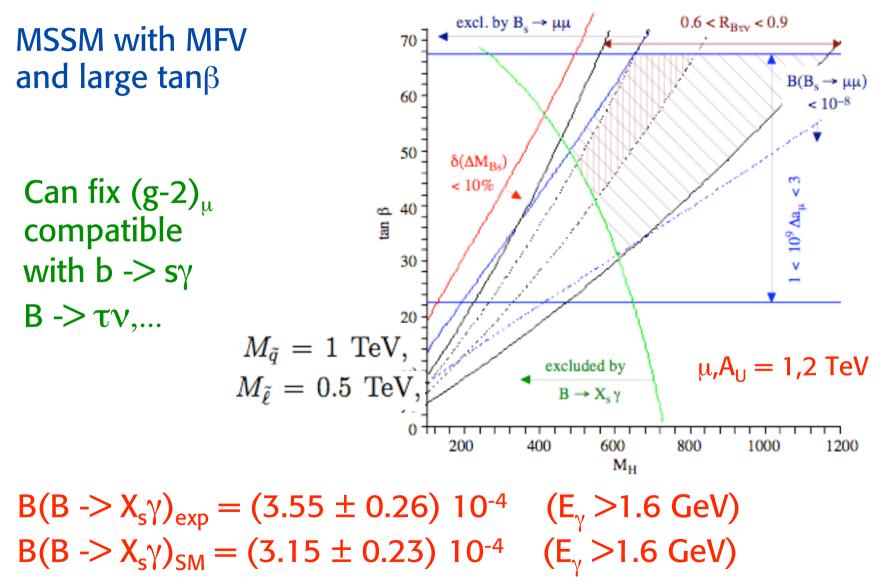

$$B^{0}-\overline{B^{0}} \text{ mixing }]$$

But the hierarchy problem demands Λ in the few TeV range only assuming $c_{NP} \sim (v_t V_{tb} V_{td})^2$ (or anyway small) we get a bound on Λ in the TeV range

> eg in Minimal Flavour Violation (MFV) models D'Ambrosio, Giudice, Isidori, Strumia'02

Minimal Flavor Violation (MFV)

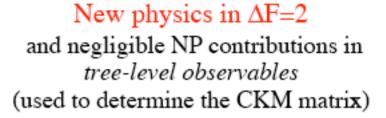
- Quark sector in SM, in absence of masses has large flavor (global) symmetry: $G_F = SU(3)^3 \times U(1)^2$
- Symmetry is only broken by Yukawa interactions, parametrized by couplings λ_U and λ_D
- MFV: all breaking of GF must transform as these
- When going to mass eigenstate basis, all mixing is parametrized by CKM and GIM is automatic
 - Adding more Higgs doublets we can change the relative normalization of λ_U & λ_D (controlled by tanβ)
 - Adding more spurions (new sources of flavour symmetry breaking) ⇒ next-to-MFV...

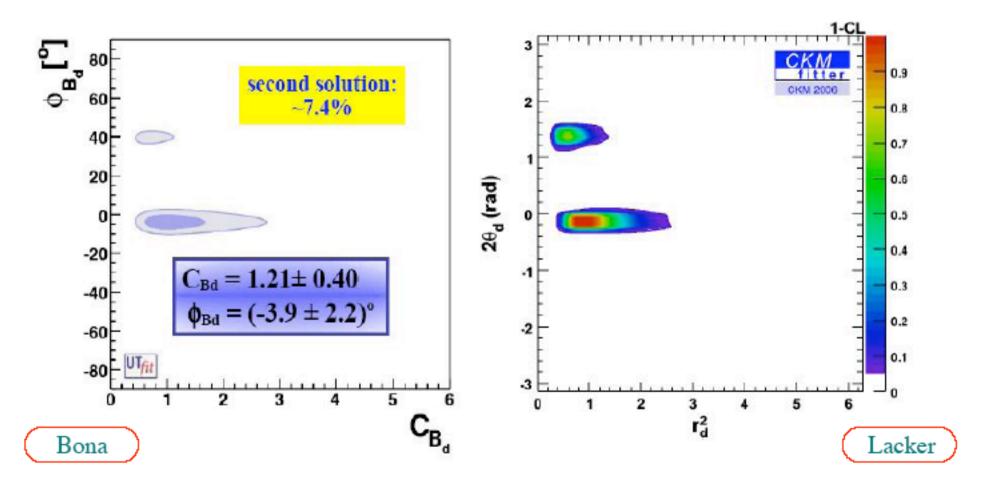


Best bounds on A (within MFV) from the quark flavour sector:

 $\Lambda > 5.5 \text{ TeV} \left[\Delta M_{B_d} \& \varepsilon_K \right]$ $\Lambda > 5.0 \text{ TeV} \left[B \rightarrow X_s \gamma \right]$

The MFV hypothesis is very *efficient* in suppressing NP effects in the UT, which is definitely <u>not the best place to look for NP if MFV holds</u> Isidori


Isidori, Paradisi'06



Misiak et al '06

Examples of Model-independent fits:

$$C_{B_{q}}e^{2i\phi_{B_{q}}} = r_{q}^{2}e^{2i\theta_{q}} = \frac{\left\langle \bar{B}_{q}^{0} | M_{12}^{SM+NP} | B_{q}^{0} \right\rangle}{\left\langle \bar{B}_{q}^{0} | M_{12}^{SM} | B_{q}^{0} \right\rangle}$$

Masiero

What to make of this triumph of the CKM pattern in flavor tests?

New Physics at the Elw. Scale is Flavor Blind CKM exhausts the flavor changing pattern at the elw. Scale

MINIMAL FLAVOR

MFV : Flavor originates only from the SM Yukawa coupl.

New Physics introduces

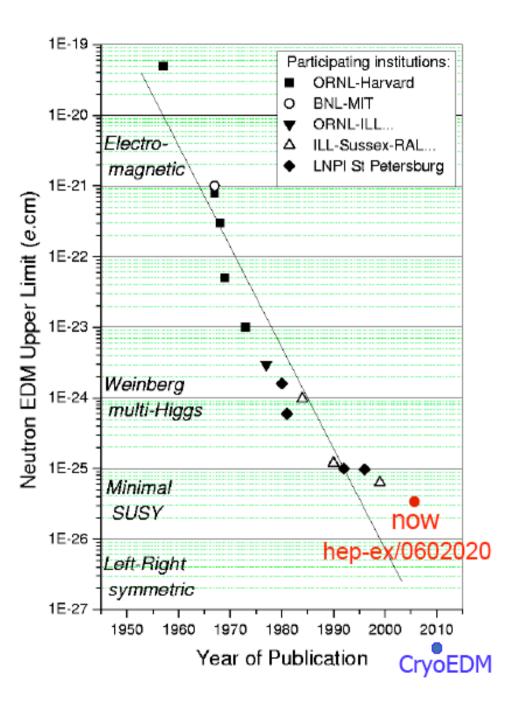
NEW FLAVOR SOURCES in addition to the CKM pattern. They give rise to contributions which are <20% in the "flavor observables" which have already been observed! B-factories, CDF, D0..... have severely tested the CKM picture (in the particularly dangerous 3rd generation sector).

The CKM picture is confirmed as the main source of CPV

 $H_{NP} < 20\% H_{SM} \qquad H_{NP} \sim loops?$ $H_{NP} \sim MFV?$

This poses strong constraints for models BSM

Not only one needs small NP contributions at the weak scale. But also to control feedback from high scales thru RGE


In particular additional constraints on SUSY models.

CPV in FC channels is dominated by CKM

What in flavour conserv. channels?

New limit on nEDM from Grenoble

 $|d_n| < 3 \ 10^{-26} e \ cm \ (90\% cl)$

