Higher-order Laguerre-Gauss modes for future gravitational wave detectors

M.Barsuglia, C.Buy, M.Granata, R.Ward Laboratoire AstroParticule et Cosmologie

- Gravitational-wave detectors introduction
- Mirror thermal noise in future gravitational wave detectors
- Noise reduction with Laguerre-Gauss modes
- Table top experiment: scope, layout, results
- Conclusions and next steps

The gravitational waves (GW)

Perturbations of the space-time metrics

General Relativity

- Propagation at the speed of light
- □ Tranverses, 2 polarisations at 45 degrees
- Generated by mass quadrupole acceleration

The possible Science with the gravitational waves

- Test of the General Relativity
- Understand Gamma ray bursts
 progenitor
- Information on the equation of state of neutron stars
- Study of supernovae Physics
- Cosmology: standard candles
- Search of a cosmological gravitational-wave background

...a new messenger

Gravitational-wave sky ?

Physics, Astrophysics and Cosmology With Gravitational Waves, Satyaprakash and Shultz Living review in Relativity

First generation detectors

First generation detectors: sensitivities

- Sensitivities at design level
- \Box Excellent duty cycles (up to ~80%)
- km scale GW interferometer technology demonstrated
- □ ...but expected rates of events expected very low

Coalescing binaries: estimates for initial detectors and upper limits

Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors, Class. Quant. Grav. 27, 173001 (2010)

Table 5. Detection rates for compact binary coalescence sources.

Future ground-based GW detectors

rate increase ~ (sensitivity increase) 3

Rate estimates for 2nd generation detectors

Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors, Class. Quant. Grav. 27, 173001 (2010)

IFO	Source ^a	$\dot{N}_{\rm low} {\rm yr}^{-1}$	॑N _{re} yr ⁻¹	$\dot{N}_{\rm high}~{\rm yr}^{-1}$	$\dot{N}_{\rm max} { m yr}^{-1}$
	NS–NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
Advanced	BH–BH	0.4	20	1000	
			1 1		

 Table 5. Detection rates for compact binary coalescence sources.

- □ NS-NS ~ 200 Mpc
- □ BH-BH ~ 1 Gpc

Likely detection by second generation interferometers

Einstein Telescope

- □ Goal: increase the sensitivity by a factor 10 with respect to 2nd generation interferometers (Advanced Virgo and Advanced LIGO)
- □ Extend the detection band down to 1 Hz
- Underground triangle 10 x 3 km of tubes
- design study document ready (pre-released)
 - Next step technical design

from ET conceptual design study

10 km

□ Science data > 2025 (if funded)

- $\Box \quad \text{Stellar mass BH binaries up to } z\sim15$
- □ Rate of events: 1e3 1e7 / year

Mirror thermal noise in future detectors

• MTN is predicted to limit the sensitivity of advanced (aLIGO [1] and AdVirgo [2]) and third generation (Einstein Telescope [3]) detectors around 100 Hz

The thermal noise

fluctuation-dissipation theorem

 $F^{2}(f) = 4k_{b}T\operatorname{Re}(Y(f))$

Example: the Johnson-Nyquist noise $V^2(f) = 4k_h T R$

- Reduction
 - **Better materials**
 - cryogenics
 - Increase the beam size
 - Non gaussian beams

Phase noise

$$x(f) = \alpha \sqrt{\frac{4k_b T\phi}{f} \frac{1}{w}}$$

New read-out beam geometries

MTN could be efficiently averaged out by using mesa [4, 6] or conical beams [5]

Problem: these beams resonate in cavities with non-spherical mirrors

Laguerre-Gauss (LG) modes [7]

- ✓ eigenmodes of spherical-mirror resonators (like present arm cavities of Virgo and LIGO)
- ✓ laser beam power spread over a larger surface
- ✓ the higher the order N=2p+l → the wider the beam
 shape → the larger the expected noise reduction [7]
- ✓ predicted noise reduction factors [8]:
 AdVirgo with LG33: 1.76
 Einstein Telescope [HF] with LG33: 1.83

[7] B. Mours et al., Class. Quantum Grav. 23, 2006

[8] J. Franc et al., ET-0002A-10

LG modes and Einstein Telescope

Cryogenic (10 K) Low power input (3 W) Silicon mirrors

Room temperature High power input (500 W) 3 MW in the arms Fused silica mirrors

Parameter	ET-D-HF	ET-D-LF	
Arm length	$10\mathrm{km}$	10 km	
Input power (after IMC)	$500\mathrm{W}$	$3 \mathrm{W}$	
Arm power	$3\mathrm{MW}$	$18\mathrm{kW}$	
Temperature	$290\mathrm{K}$	$10\mathrm{K}$	
Mirror material	fused silica	silicon	
Mirror diameter / thickness	$62\mathrm{cm}$ / $30\mathrm{cm}$	$\min 45 \mathrm{cm}/ \mathrm{T}$	
Mirror masses	$200 \mathrm{kg}$	$211 \mathrm{kg}$	
Laser wavelength	$1064\mathrm{nm}$	$1550\mathrm{nm}$	
SR-phase	tuned (0.0)	detuned (0.6)	
SR transmittance	10%	20%	
Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.	
Filter cavities	$1 \times 10 \mathrm{km}$	$2 imes 10\mathrm{km}$	
Squeezing level	$10 \mathrm{dB}$ (effective)	$10 \mathrm{dB}$ (effective)	
Beam shape	LG_{33}	TEM_{00}	
Beam radius	$7.25\mathrm{cm}$	$9\mathrm{cm}$	
Scatter loss per surface	$37.5\mathrm{ppm}$	$37.5\mathrm{ppm}$	
Seismic isolation	SA, 8 m tall	mod SA, 17 m tall	
Seismic (for $f > 1 \text{ Hz}$)	$5 \cdot 10^{-10} \mathrm{m}/f^2$ $5 \cdot 10^{-10} \mathrm{m}/f^2$		
Gravity gradient subtraction	none	none	

Goal of the table-top experiment

LG beams have never been used for GW detection. We need to study:

- I. optimal technique for LG mode generation
- II. optical performances and control requirements of LG beams

We aim to:

I. Develop **efficient and suitable** technique to generate **high-purity** LG modes :

LG generator

- high efficiency \rightarrow low power loss
- high purity
 high beam coupling with arm cavities
- simple implementation
 - → laser system unchanged + LG generator

Laser system

FTM

ETM

ITM

BS

PD

ITM

 PR

SR

Generation technique

We selected an <u>etched-glass diffractive plate</u> (DP) to generate an LG33 mode:

- simple technique: the DP is a phase retarder
- stable passive optic
- can handle high power beams
- ightarrow scalable to future GW detectors \checkmark

Creation of Laguerre-Gaussian laser modes using diffractive optics, Kennedy et al., Phys Rev A, 2002

- DP realized by SILIOS Technologies
- Phase pattern: LG33 phase + blazed grating
- 2400x2400 pixels, 1 pixel = 5.9 μm
- 16 phase levels etched on the surface

Generated pseudo-LG33 mode

- mode purity \equiv 2D-amplitude overlap integral at a given point along propagation (upper limit, phase is neglected): $\gamma = \langle LG_{33 theory} | LG_{33 measure} \rangle = 88\%$
- coupling losses: $L = 1 \gamma^2 = 23\%$

due to:

- design of the diffractive plate pattern

- astigmatic input LG00 beam

Spatial filtering for high-purity LG33 modes

• The generated pseudo-LG33 mode can be flitered in a mode-cleaner cavity to increase its purity

٠

LG33 mode filtering

mode-cleaner:

- plano/concave monolithic cavity
- Finesse = 103 , FSR = 500 MHz
- stable locking (hours) on LG33 eigenmode resonance

LG33 transmission: $P_{out} / P_{in} = 58 \%$ throughput: $\tau = 90 \% \implies P_{in} LG33 = 64 \%$ power on other modes: $P_{other} / P_{total} = 19 \%$

High-purity transmitted LG33 mode [1]

• Beam far-field images:

- Purity is higher: $\gamma = \langle LG_{33th} | LG_{33meas} \rangle = 98\%$
- Coupling losses are 6 times smaller: $L = 1 \gamma^2 = 4.0\%$

High-purity transmitted LG33 mode [2]

Global conversion efficiency

towards higher conversion efficiency: optimization of input LG00 beam shape of DP phase pattern of cavity mode-matching

A table-top interferometer with LG modes

Goal: test table-top LG33 power recycled Fabry-Perot Michelson

- test the optical performances
- > validation of a sensing scheme for longitudinal & angular control
- measure the sensitivity of the LG33 beam to misalignments

1st step: operation of a simple Michelson

locked using the same digital control system of Virgo

preliminary fringe visibility: V = (P_{max}-P_{min}) / (P_{max}+P_{min}) = 99 %

2nd step (yet to come): upgrade of the optical configuration

The experimental set-up

The degeneracy problem

- The critical point of this technique is the degeneracy of high-order LG modes (simulations by Adhikari et al., Caltech, Galimberti et al., LMA-Lyon)
- Mirror figure errors could excite degenerate modes of the same order of the LG33 (N=2P+I = 9), spoiling the contrast of the interferometer
- Mirror quality required is higher than what is available with present technology
- Efforts to understand/mitigate this problem on going

Conclusions

- A generator based on an etched fused silica plate and a modecleaner cavity is able to produce high-purity LG33 modes with good efficiency
- This technique can be extended to the high power required in future GW detectors and its efficiency can be further improved
- The alignment and the lock of the mode-cleaner and of the simple Michelson demonstrated the feasibility of higher-order LG mode basic interferometry

For more details:

M. Granata, C. Buy, R. Ward, M. Barsuglia, 'Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors', Phys. Rev. Lett. 105 (2010) 231102

Next steps

- Try to solve/mitigate the degeneracy problem
- Test performances and control schemes of a table-top complex interferometer illuminated with an LG33 mode
- Improve the efficiency of the generator