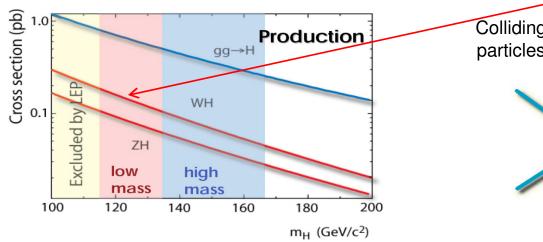
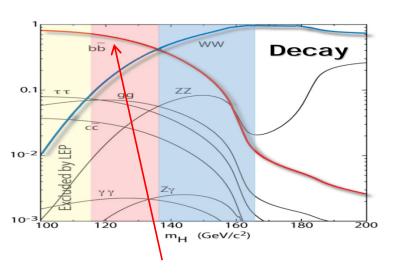
Search for the Standard Model Higgs Boson Produced in Association with a W boson at CDF

Adrian Buzatu, McGill University On behalf of the Collider Detector at Fermilab WH Working Group

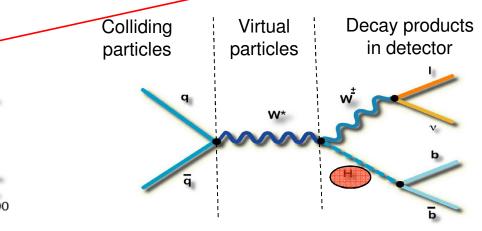
Higgs Hunting Workshop, Orsay, 2011

29 July 2011


The WH Associated Production 🐯 McGill

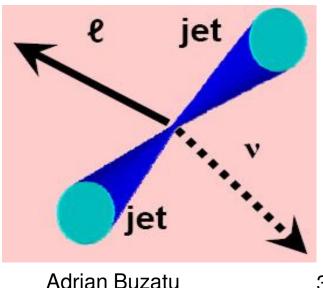

Want to perform a low mass SM Higg search

Our search: a W boson + a Higgs boson


The W boson decays to an electron (muon) + neutrino

It helps us a lot that we can indentify well electrons and muons in the detector

Our search (WH)



WH Search at CDF, Higgs Hunting, Orsay, 2011

- One charged lepton, large missing transverse energy and two jets, out of which at least one originates from a bottom quark
- \Box Also includes ZH \rightarrow IIbb, where one lepton is missed
- □4 charged lepton categories
 - $_{\odot}$ Triggered central tight leptons, forward tight electrons
 - $_{\odot}$ Non triggered loose electrons and muons (MET+ jets triggers)
- Pretag used as control region
- 4 orthogonal b-tagging categories as signal regions

□Increased the integrated luminosity from 5.7 to 7.5 fb-1 □Improvements on the non-W QCD background

- Replaced the cut-based non-W QCD veto with a better multivariate technique, which reduces the contribution of this background and increases the signal – see F. Sforza's talk
- $_{\odot}$ Improved the model for the central for the central electrons
- $_{\odot}$ Relaxed the MET cut for the central muons

□Improvements on signal acceptance

- Increased acceptance for the non triggered loose muons through the addition of a third MET+jets trigger thanks to a novel in trigger combination method - next slide and backup slides
- $\circ\,$ Increased acceptance for the non triggered loose electrons through the use of the high-p_T electron triggers

New Trigger Combination Method To Avoid a Logical OR

Consider each event its own kinematic region

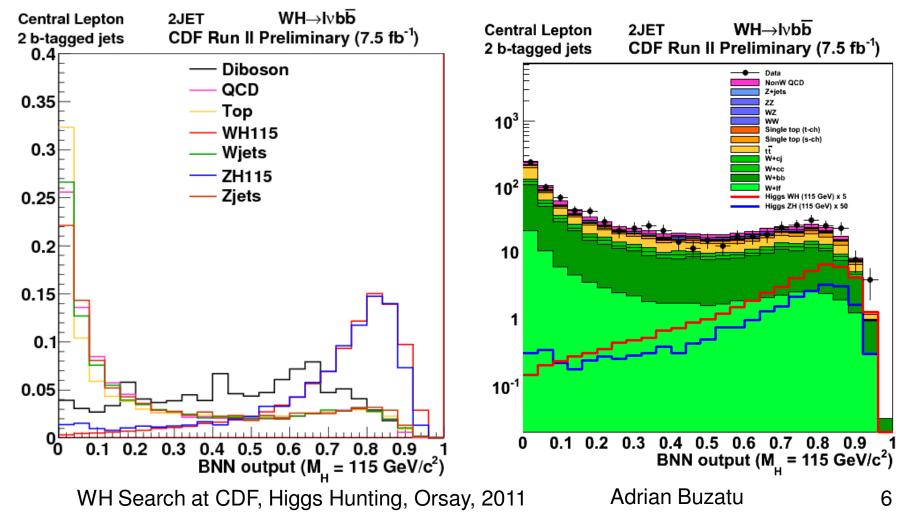
- Equivalent to dividing the kinematic phase space in an infinity of mutually orthogonal kinematic regions
- □No more need to study and identify before the analysis all the orthogonal kinematic regions
- On an event-by-event basis, the trigger with largest a priori probability to fire is chosen (in-situ trigger study), the probability being the product of

 Trigger probability to fire each trigger level based on trigger parameterization (trigger MET, jet kinematic quantities)

 $_{\odot}$ Inverse of the trigger prescale for the event (ex: 0.91)

- \circ 0 or 1 (if the trigger is defined or not for the event)
 - ✤ For MC, a random number simulates in which data period it is

0 or 1 (if the trigger-specific jet event selection is passed)
 WH Search at CDF, Higgs Hunting, Orsay, 2011
 Adrian Buzatu


Final Discriminant

□ Inputs: dijet invariant mass + other kinematic quantities

- □ Backgrounds (signal) peak to the left (right)
- Good agreement between data and background

No excess seen, so we continue to set limits

Limit Setting & Systematic Uncertainties

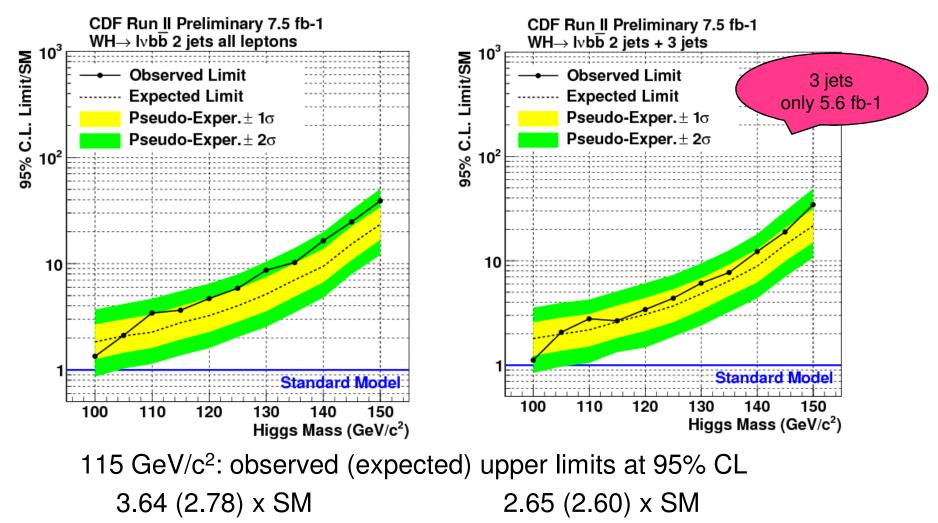
Bayesian approach with Poisson statistics and flat priors

Rate and shape systematic uncertainties are introduced as nuisance parameters

Truncated Gaussian distributions

Rate: uncertainty on the total normalizations
 Shape: uncertainty on bin-by-bin normalizations

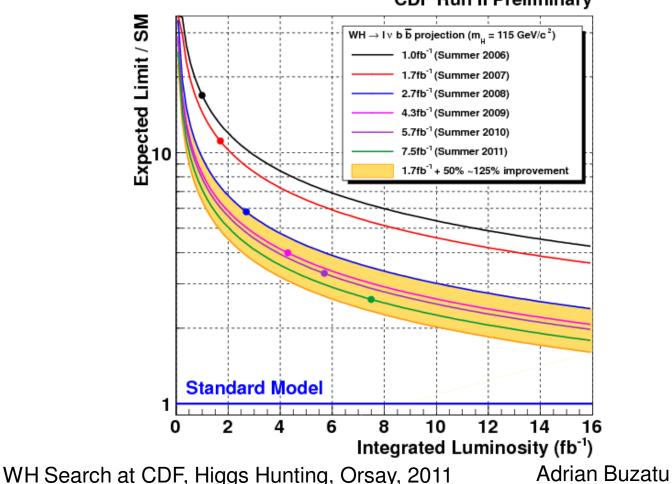
 Use full discriminant shapes to extract the most information


Correlated among various channels

WH Search at CDF, Higgs Hunting, Orsay, 2011 Adrian Buzatu

WH Upper Limits

Most sensitive analysis in the world for low mass Higgs


WH Search at CDF, Higgs Hunting, Orsay, 2011

WH Search Projection

Always improved more than just by adding luminosityBand: conservative and optimistic improvement plan

CDF Run II Preliminary

Conclusion

> WH Search, CDF Collaboration

- 2 jets: 7.5 fb⁻¹, 3 jets: 5.6 fb⁻¹
- □ Pretag sample as control region
- □ 4 orthogonal b-tagging categories as signal regions
- □ 4 orthogonal charged lepton categories
- Heavy use of multivariate techniques
- No excess is seen, so we set 95% CL upper limits
 in the range 100 to 150 GeV/c² with 5 GeV/c² increments

Observed (Expected)

□ from 1.12 (1.79)xSM for 100 GeV/c² to 34.4 (21.6)xSM for 150 GeV/c² □ 2.65 (2.60) x SM at 115 CeV/c²

□ 2.65 (2.60) x SM at 115 GeV/c²

□ Most sensitive analysis in the world for low mass Higgs!

Backup Slides

WH Search at CDF, Higgs Hunting, Orsay, 2011

Adrian Buzatu

11

The Higgs Boson

Motivation

- The only elementary particle predicted by the Standard Model not yet observed or refuted
- □ Predicted by the Higgs mechanism in 1964, which explains
 - o the spontaneous symmetry breaking
 - $\circ\;$ the masses of the electroweak bosons, the masses of fermions

> The Higgs boson characterized only by its mass

- LEP direct searches
 - \circ exclude masses < 114.4 GeV/c² at 95% CL
- Previous Tevatron direct searches
 - $\,\circ\,$ exclude masses in [158-173] GeV/c² at 95% CL as of July 1st 2011
- Indirect electroweak fits
 - $\,\circ\,$ exclude masses > 185 GeV/c² at 95% CL

> Higgs production is a very rare process

WH Search at CDF, Higgs Hunting, Orsay, 2011 Adrian Buzatu

Event Yield Table

$WH \rightarrow \ell \nu bb, 2 jets$				
CDF Run II Preliminary 7.5 fb^{-1}				
Total	ST+ST	ST+JP	ST+NN	1-ST
Pretag Events	184050	184050	184050	184050
$-t\overline{t}$	142 ± 22	114 ± 12	$62.8 {\pm} 6.4$	479 ± 49
Single $top(s-ch)$	$45.0 {\pm} 6.7$	35.1 ± 3.4	18.9 ± 1.8	106 ± 10
Single $top(t-ch)$	13.9 ± 2.4	$13.3 {\pm} 2.0$	$8.7 {\pm} 1.2$	191 ± 23
WW	$1.67 {\pm} 0.42$	$6.23{\pm}2.08$	5.14 ± 1.35	186 ± 25
WZ	12.9 ± 2.0	10.7 ± 1.2	$5.84 {\pm} 0.62$	53.3 ± 6.2
ZZ	$0.62{\pm}0.09$	$0.49{\pm}0.06$	$0.29{\pm}0.03$	$2.05 {\pm} 0.23$
Z + jets	$9.64{\pm}1.40$	11.9 ± 1.7	$8.75 {\pm} 1.30$	182 ± 25
$Wb\overline{b}$	257 ± 104	228 ± 91	125 ± 50	1450 ± 580
$W c \overline{c} / c$	$31.0{\pm}12.6$	$98.3 {\pm} 40.5$	$63.8 {\pm} 26.0$	$1761{\pm}708$
Mistag	12.1 ± 2.9	52.8 ± 15.2	57.0 ± 14.3	1646 ± 220
non-W QCD	57.9 ± 23.6	85.3 ± 34.1	$74.9{\pm}29.9$	$747{\pm}299$
Total background	584 ± 169	656 ± 194	432 ± 126	6802 ± 1822
Observed Events	519	568	402	6482
WH and ZH signal (115 GeV)	7.28 ± 0.98	5.34 ± 0.39	$2.80{\pm}0.19$	16.0 ± 1.2

WH Search at CDF, Higgs Hunting, Orsay, 2011

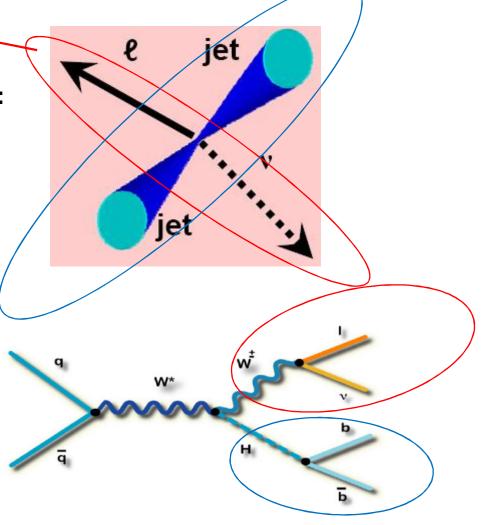
Acceptance Improvement

Charged lepton (Electron or Muon) <

Our contribution to improve the search:

More charged leptons, which means

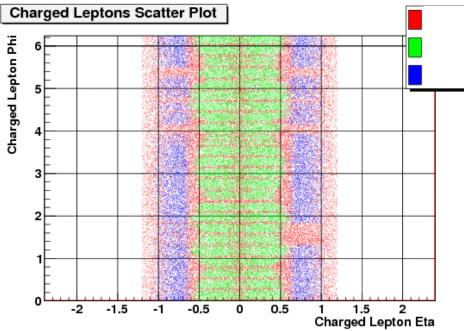
More W bosons, which means

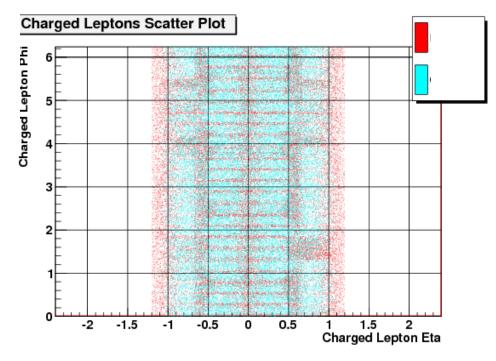

More WH events, which means

More signal selected, which means

Better Higgs sensitivity!

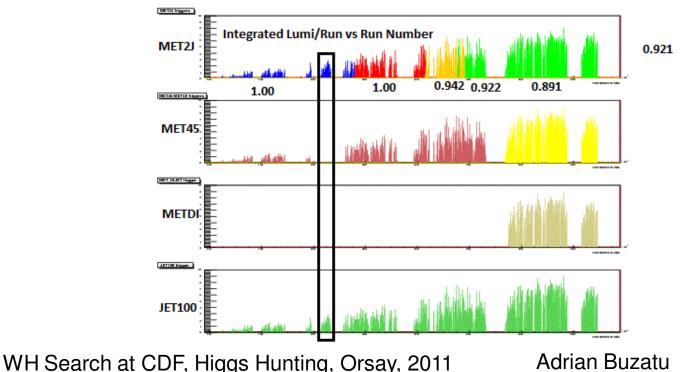
We introduce a new method to reconstruct electrons and muons that would normally be lost in the non instrumented regions of the detector




Charged Lepton Improvement

Dark blue, Green – muons Light blue – electrons Red – muons or electrons that would be lost in the non instrumented regions of the detector, but we recover Cylindrical detector rolled on a plane

Y axis: 0-2Pi X axis – 0 for half height


WH Search at CDF, Higgs Hunting, Orsay, 2011

3 MET + jets triggers at CDF

- Not all triggers are defined for all runs
- □ A trigger had a bug for certain runs, must be treated as not defined
- □ Some triggers have prescales for certain data periods
- Used for non-triggered loose muon and electron candidates
- How to combine the three triggers optimally while avoiding correlations as in the case of a logical OR between triggers, which brings extra systematic uncertainties, which are also harder to compute?

Old Trigger Combination Method 🐯 McGill To Avoid a Logical OR

Divide kinematic phase space in orthogonal regions

 $_{\odot}$ For many triggers, many kinematic regions

 $_{\odot}$ How to choose them? Study that before the analysis

- $_{\odot}$ Parameterize each trigger (at each level) in each region
- Only this step will be generalized by the new method

□Assign only one trigger to all events in that region

- □ For MC events, assign an event weight between 0 and 1 as the probability that the trigger fires
- For data events, check if the trigger fired, if yes, return a weight of 1, if not, return a weight of 0 (reject event)
- □ For both MC and data, do not check the other triggers

 $_{\odot}$ To ensure orthogonality between triggers

New Trigger Combination Method To Avoid a Logical OR

Consider each event its own kinematic region

- Equivalent to dividing the kinematic phase space in an infinity of mutually orthogonal kinematic regions
- No more need to study and identify before the analysis all the orthogonal kinematic regions
- On an event-by-event basis, the trigger with largest a priori probability to fire is chosen (in-situ trigger study), the probability being the product of

 Trigger probability to fire each trigger level based on trigger parameterization (trigger MET, jet kinematic quantities)

 $_{\odot}$ Inverse of the trigger prescale for the event (ex: 0.91)

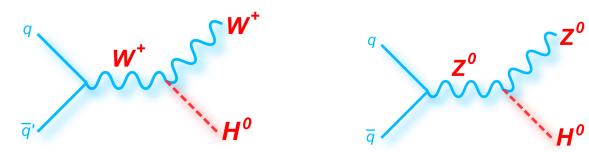
- \circ 0 or 1 (if the trigger is defined or not for the event)
 - ✤ For MC, a random number simulates in which data period it is

0 or 1 (if the trigger-specific jet event selection is passed)
 WH Search at CDF, Higgs Hunting, Orsay, 2011
 Adrian Buzatu

- The novel method allows to add new charged lepton categories (non triggered loose muons and non triggered loose electrons)
 - These lepton candidates are isolated tracks that point to non instrumented regions of the detector
 - $_{\odot}$ At CDF we do not have isolated track triggers
 - $_{\odot}$ Use orthogonal trigger information, so MET+jets triggers
 - $_{\odot}$ We have 3 of such triggers
- This increases the signal acceptance by 50% over triggered tight charged leptons only (central electrons, central muons, forward electrons)
- □This increases the WH search sensitivity

Low Mass Searches

□Masses smaller than 135 GeV/c²


□Higgs decays mostly to bottom quark pairs

□Single Higgs production (gluon fusion)

- Largest cross section
- $_{\odot}$ Not feasible for bottom quark decay:10⁹ more QCD background
- $_{\odot}$ Still, use it for Higgs decays to photon or tau lepton pairs

□Associated production (WH, ZH, ttH)

- $_{\odot}$ Take advantage of the leptonic decays of the W or Z bosons
- Charged-lepton and missing-transverse-energy based triggers
- $_{\odot}$ Identify jets that originate from bottom quarks

WH Search at CDF, Higgs Hunting, Orsay, 2011

 \Box WH \rightarrow lvbb search 2jet b-tagging category with best s/b ratio; all charged leptons combined

Artificial neural network as final discriminant trained for a Higgs boson mass of 115 GeV/c²

WH Search at CDF, Higgs Hunting, Orsay, 2011 Adrian Buzatu

Statistical Approach

Bayesian Posterior Probability

$$\begin{split} p(R|\vec{n}) &= \frac{\int \int d\vec{s} d\vec{b} L(R,\vec{s},\vec{b}|\vec{n}) \pi(R,\vec{s},\vec{b})}{\int \int \int dR d\vec{s} d\vec{b} L(R,\vec{s},\vec{b}|\vec{n}) \pi(R,\vec{s},\vec{b})} \Rightarrow \int_{0}^{R_{0.95}} p(R|\vec{n}) dR = 0.95 \\ R &= (\sigma \times BR) / (\sigma_{SM} \times BR_{SM}), \ R_{0.95} : 95\% \text{ Credible Level Upper Limit} \\ \vec{s}, \vec{b}, \vec{n} &= s_{ij}, b_{ij}, n_{ij} (\text{\# of signal, background and observed events in } j\text{-th bin for } i\text{-th channel}) \end{split}$$

 $\pi: \mathsf{Bayes'}$ prior density

Combined Binned Poisson Likelihood

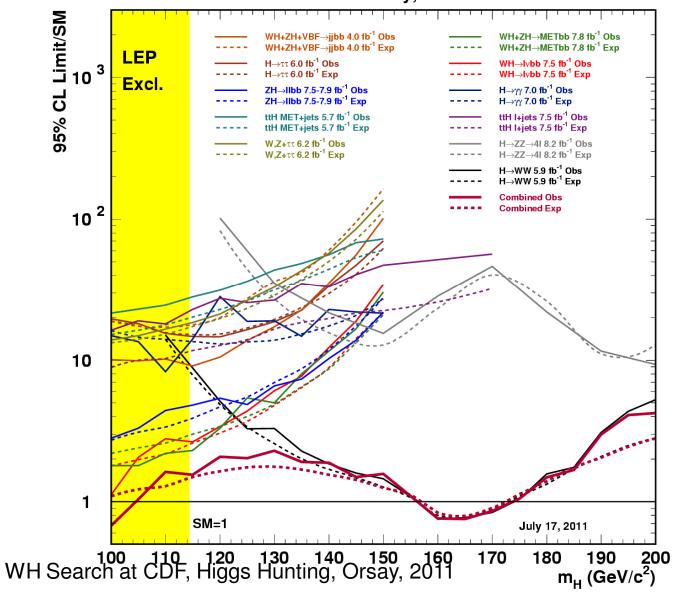
$$L(R, ec{s}, ec{b} | ec{n}) = \prod_{i=1}^{N_{ ext{channel}}} \prod_{j=1}^{N_{ ext{bin}}} rac{\mu_{ij}^{n_{ij}} e^{-\mu_{ij}}}{n_{ij}!}$$

Principle of ignorance

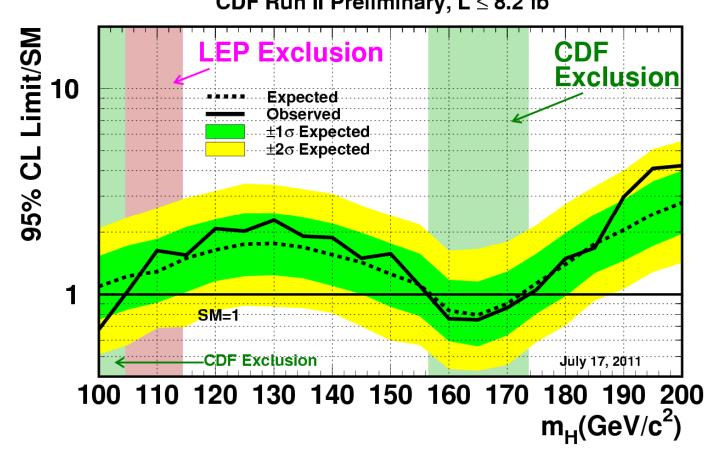
- for the number of higgs events (instead of higgs Xsec)

$$\begin{aligned} \pi(R, \vec{s}, \vec{b}) &= \pi(R) \pi(\vec{s}) \pi(\vec{b}) = s_{tot} \theta(Rs_{tot}) \pi(\vec{s}) \pi(\vec{b}) \\ s_{tot} &= \Sigma_{i,j} s_{ij} : \text{Total number of signal prediction} \end{aligned}$$

 $\pi(x) = G(x|\hat{x}, \sigma_x)$ (x = s, b) \hat{x} : expected mean, σ_x : total uncertainty


WH Search at CDF, Higgs Hunting, Orsay, 2011 Adrian Buzatu 22

CDF Combination – 1


CDF Run II Preliminary, $L \le 8.2 \text{ fb}^{-1}$

Exclude at 95% CL: [100.0 -104.5] & [156.7-173.8] GeV/c² □ Expect to exclude at 95% CL: [156.5-173.7] GeV/c²

CDF Run II Preliminary, $L \le 8.2$ fb⁻¹

WH Search at CDF, Higgs Hunting, Orsay, 2011

CDF Combination

□CDF Collaboration, up to 8.2 fb⁻¹

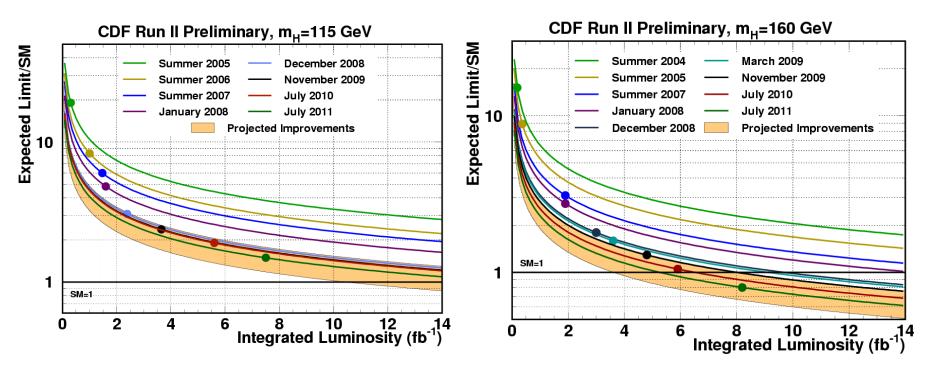
□ Search for the Standard Model Higgs Boson

□Very many channels

□None sees an excess of signal over backgrounds

- We combine all channels and use a Bayesian statistical approach to compute 95% CL upper limits on the cross section of the Higgs boson
- □We expect to exclude at 95% CL Higgs masses in the range : [157.0-172.2] GeV/c²
- □We exclude at 95% CL Higgs masses in the ranges [100.0 -104.5] & [156.5-173.7] GeV/c²

□ Stay tuned for the Tevatron combination result!



CDF Combination Trajectory of Sensitivity

26

Sensitivity improved continuously more than just by increasing the integrated luminosity; showing 115 and 160 GeV/c²

Adrian Buzatu

WH Search at CDF, Higgs Hunting, Orsay, 2011