Search for the Standard Model Higgs Boson
Produced in Association with a W boson at CDF

Adrian Buzatu, McGill University
On behalf of the
Collider Detector at Fermilab
WH Working Group

Higgs Hunting Workshop, Orsay, 2011

29 July 2011
Want to perform a low mass SM Higg search

Our search: a W boson + a Higgs boson

The W boson decays to an electron (muon) + neutrino

It helps us a lot that we can identify well electrons and muons in the detector

Our search (WH)

WH Search at CDF, Higgs Hunting, Orsay, 2011
Adrian Buzatu
Event Selection

- One charged lepton, large missing transverse energy and two jets, out of which at least one originates from a bottom quark
- Also includes ZH → llbb, where one lepton is missed
- 4 charged lepton categories
 - Triggered central tight leptons, forward tight electrons
 - Non triggered loose electrons and muons (MET+ jets triggers)
- Pretag used as control region
- 4 orthogonal b-tagging categories as signal regions
Improvements Since 2010

- **Increased the integrated luminosity** from 5.7 to 7.5 fb⁻¹

- **Improvements on the non-W QCD background**
 - Replaced the cut-based non-W QCD veto with a better multivariate technique, which reduces the contribution of this background and increases the signal – see F. Sforza’s talk
 - Improved the model for the central for the central electrons
 - Relaxed the MET cut for the central muons

- **Improvements on signal acceptance**
 - Increased acceptance for the non triggered loose muons through the addition of a third MET+jets trigger thanks to a novel in trigger combination method - next slide and backup slides
 - Increased acceptance for the non triggered loose electrons through the use of the high-p_T electron triggers
New Trigger Combination Method To Avoid a Logical OR

- Consider each event its own kinematic region.
- Equivalent to dividing the kinematic phase space in an infinity of mutually orthogonal kinematic regions.
- No more need to study and identify before the analysis all the orthogonal kinematic regions.
- On an event-by-event basis, the trigger with largest a priori probability to fire is chosen *(in-situ trigger study)*, the probability being the product of:
 - Trigger probability to fire each trigger level based on trigger parameterization (trigger MET, jet kinematic quantities).
 - Inverse of the trigger prescale for the event (ex: 0.91).
 - 0 or 1 (if the trigger is defined or not for the event).
 - For MC, a random number simulates in which data period it is.
 - 0 or 1 (if the trigger-specific jet event selection is passed).
Final Discriminant

- Inputs: dijet invariant mass + other kinematic quantities
- Backgrounds (signal) peak to the left (right)
- Good agreement between data and background
- No excess seen, so we continue to set limits

Central Lepton 2 b-tagged jets

2JET

WH→lνb¯b

CDF Run II Preliminary (7.5 fb⁻¹)

- Diboson
- QCD
- Top
- WH115
- Wjets
- ZH115
- Zjets

WH Search at CDF, Higgs Hunting, Orsay, 2011 Adrian Buzatu
Limit Setting & Systematic Uncertainties

- **Bayesian** approach with **Poisson** statistics and **flat priors**

- Rate and shape systematic uncertainties are introduced as **nuisance parameters**
 - Truncated Gaussian distributions

- **Rate**: uncertainty on the total normalizations
- **Shape**: uncertainty on bin-by-bin normalizations
 - Use full discriminant shapes to extract the most information

- **Correlated** among various channels
WH Upper Limits

115 GeV/c²: observed (expected) upper limits at 95% CL
3.64 (2.78) x SM 2.65 (2.60) x SM

Most sensitive analysis in the world for low mass Higgs
WH Search Projection

- Always improved more than just by adding luminosity
- Band: conservative and optimistic improvement plan
Conclusion

- **WH Search, CDF Collaboration**
 - 2 jets: 7.5 fb\(^{-1}\), 3 jets: 5.6 fb\(^{-1}\)
 - Pretag sample as control region
 - 4 orthogonal b-tagging categories as signal regions
 - 4 orthogonal charged lepton categories

- **Heavy use of multivariate techniques**

- **No excess is seen, so we set 95% CL upper limits**
 - in the range 100 to 150 GeV/c\(^2\) with 5 GeV/c\(^2\) increments

- **Observed (Expected)**
 - from 1.12 (1.79)xSM for 100 GeV/c\(^2\) to 34.4 (21.6)xSM for 150 GeV/c\(^2\)
 - 2.65 (2.60) x SM at 115 GeV/c\(^2\)
 - Most sensitive analysis in the world for low mass Higgs!

WH Search at CDF, Higgs Hunting, Orsay, 2011 Adrian Buzatu
Backup Slides
The Higgs Boson

- **Motivation**
 - The only elementary particle predicted by the Standard Model not yet observed or refuted
 - Predicted by the Higgs mechanism in 1964, which explains
 - the spontaneous symmetry breaking
 - the masses of the electroweak bosons, the masses of fermions

- **The Higgs boson characterized only by its mass**
 - LEP direct searches
 - exclude masses < 114.4 GeV/c² at 95% CL
 - Previous Tevatron direct searches
 - exclude masses in [158-173] GeV/c² at 95% CL as of July 1st 2011
 - Indirect electroweak fits
 - exclude masses > 185 GeV/c² at 95% CL

- **Higgs production is a very rare process**

WH Search at CDF, Higgs Hunting, Orsay, 2011 Adrian Buzatu
Event Yield Table

$WH \rightarrow \ell vbb$, 2jets
CDF Run II Preliminary 7.5 fb$^{-1}$

<table>
<thead>
<tr>
<th>Source</th>
<th>ST+ST</th>
<th>ST+JP</th>
<th>ST+NN</th>
<th>1-ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>184050</td>
<td>184050</td>
<td>184050</td>
<td>184050</td>
</tr>
<tr>
<td>Pretag Events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>142±22</td>
<td>114±12</td>
<td>62.8±6.4</td>
<td>479±49</td>
</tr>
<tr>
<td>Single top(s-ch)</td>
<td>45.0±6.7</td>
<td>35.1±3.4</td>
<td>18.9±1.8</td>
<td>106±10</td>
</tr>
<tr>
<td>Single top(t-ch)</td>
<td>13.9±2.4</td>
<td>13.3±2.0</td>
<td>8.7±1.2</td>
<td>191±23</td>
</tr>
<tr>
<td>WW</td>
<td>1.67±0.42</td>
<td>6.23±2.08</td>
<td>5.14±1.35</td>
<td>186±25</td>
</tr>
<tr>
<td>WZ</td>
<td>12.9±2.0</td>
<td>10.7±1.2</td>
<td>5.84±0.62</td>
<td>53.3±6.2</td>
</tr>
<tr>
<td>ZZ</td>
<td>0.62±0.09</td>
<td>0.49±0.06</td>
<td>0.29±0.03</td>
<td>2.05±0.23</td>
</tr>
<tr>
<td>$Z + jets$</td>
<td>9.64±1.40</td>
<td>11.9±1.7</td>
<td>8.75±1.30</td>
<td>182±25</td>
</tr>
<tr>
<td>$W\bar{b}$</td>
<td>257±104</td>
<td>228±91</td>
<td>125±50</td>
<td>1450±580</td>
</tr>
<tr>
<td>$Wc\bar{c}/c$</td>
<td>31.0±12.6</td>
<td>98.3±40.5</td>
<td>63.8±26.0</td>
<td>1761±708</td>
</tr>
<tr>
<td>Mistag</td>
<td>12.1±2.9</td>
<td>52.8±15.2</td>
<td>57.0±14.3</td>
<td>1646±220</td>
</tr>
<tr>
<td>non-W QCD</td>
<td>57.9±23.6</td>
<td>85.3±34.1</td>
<td>74.9±29.9</td>
<td>747±299</td>
</tr>
</tbody>
</table>

| Total background | 584±169 | 656±194 | 432±126 | 6802±1822 |
| Observed Events | 519 | 568 | 402 | 6482 |

WH and ZH signal (115 GeV) 7.28±0.98 5.34±0.39 2.80±0.19 16.0±1.2
Acceptance Improvement

Charged lepton (Electron or Muon)

Our contribution to improve the search:

More charged leptons, which means

More W bosons, which means

More WH events, which means

More signal selected, which means

Better Higgs sensitivity!

We introduce a new method to reconstruct electrons and muons that would normally be lost in the non instrumented regions of the detector.

WH Search at CDF, Higgs Hunting, Orsay, 2011

Adrian Buzatu
Charged Lepton Improvement

Cylindrical detector rolled on a plane

Y axis: 0-2Pi
X axis – 0 for half height

Dark blue, Green – muons
Light blue – electrons
Red – muons or electrons that would be lost in the non instrumented regions of the detector, but we recover

WH Search at CDF, Higgs Hunting, Orsay, 2011
3 MET + jets triggers at CDF

- Not all triggers are defined for all runs
- A trigger had a bug for certain runs, must be treated as not defined
- Some triggers have prescales for certain data periods
- Used for non-triggered loose muon and electron candidates
- **How to combine the three triggers optimally while avoiding correlations as in the case of a logical OR between triggers, which brings extra systematic uncertainties, which are also harder to compute?**
Old Trigger Combination Method To Avoid a Logical OR

- Divide kinematic phase space in orthogonal regions
 - For many triggers, many kinematic regions
 - How to choose them? Study that before the analysis
 - Parameterize each trigger (at each level) in each region
 - Only this step will be generalized by the new method
- Assign only one trigger to all events in that region
- For MC events, assign an event weight between 0 and 1 as the probability that the trigger fires
- For data events, check if the trigger fired, if yes, return a weight of 1, if not, return a weight of 0 (reject event)
- For both MC and data, do not check the other triggers
 - To ensure orthogonality between triggers
New Trigger Combination Method To Avoid a Logical OR

- Consider each event its own kinematic region
- Equivalent to dividing the kinematic phase space in an infinity of mutually orthogonal kinematic regions
- No more need to study and identify before the analysis all the orthogonal kinematic regions

- On an event-by-event basis, the trigger with largest a priori probability to fire is chosen (in-situ trigger study), the probability being the product of
 - Trigger probability to fire each trigger level based on trigger parameterization (trigger MET, jet kinematic quantities)
 - Inverse of the trigger prescale for the event (ex: 0.91)
 - 0 or 1 (if the trigger is defined or not for the event)
 - For MC, a random number simulates in which data period it is
 - 0 or 1 (if the trigger-specific jet event selection is passed)
The novel method allows to add new charged lepton categories (non triggered loose muons and non triggered loose electrons)
 - These lepton candidates are isolated tracks that point to non instrumented regions of the detector
 - At CDF we do not have isolated track triggers
 - Use orthogonal trigger information, so MET+jets triggers
 - We have 3 of such triggers

This increases the signal acceptance by 50% over triggered tight charged leptons only (central electrons, central muons, forward electrons)

This increases the WH search sensitivity
Low Mass Searches

- Masses smaller than 135 GeV/c^2
- Higgs decays mostly to bottom quark pairs
- Single Higgs production (gluon fusion)
 - Largest cross section
 - Not feasible for bottom quark decay: 10^9 more QCD background
 - Still, use it for Higgs decays to photon or tau lepton pairs

- Associated production (WH, ZH, ttH)
 - Take advantage of the leptonic decays of the W or Z bosons
 - Charged-lepton and missing-transverse-energy based triggers
 - Identify jets that originate from bottom quarks

WH Search at CDF, Higgs Hunting, Orsay, 2011

Adrian Buzatu
Example of Discriminant

- WH → lvbb search 2jet b-tagging category with best s/b ratio; all charged leptons combined
- Artificial neural network as final discriminant trained for a Higgs boson mass of 115 GeV/c²
Statistical Approach

Bayesian Posterior Probability

\[
p(R|\bar{n}) = \frac{\int \int d\bar{s}d\bar{b}L(R, \bar{s}, \bar{b}|\bar{n})\pi(R, \bar{s}, \bar{b})}{\int \int \int dRd\bar{s}d\bar{b}L(R, \bar{s}, \bar{b}|\bar{n})\pi(R, \bar{s}, \bar{b})} \Rightarrow \int_0^{R_{0.95}} p(R|\bar{n})dR = 0.95
\]

\[
R = (\sigma \times BR)/(\sigma_{SM} \times BR_{SM}), \quad R_{0.95} : 95\% Credible Level Upper Limit
\]

\[
\bar{s}, \bar{b}, \bar{n} = s_{ij}, b_{ij}, n_{ij} (# \text{ of signal, background and observed events in } j\text{-th bin for } i\text{-th channel})
\]

\[
\pi : \text{Bayes' prior density}
\]

Combined Binned Poisson Likelihood

\[
L(R, \bar{s}, \bar{b}|\bar{n}) = \prod_{i=1}^{N_{\text{channel}}} \prod_{j=1}^{N_{\text{bin}}} \frac{\mu_{ij}^n e^{-\mu_{ij}}}{n_{ij}!}
\]

Principle of ignorance

- for the number of higgs events (instead of higgs Xsec)

\[
\pi(R, \bar{s}, \bar{b}) = \pi(R)\pi(\bar{s})\pi(\bar{b}) = s_{tot}\theta(Rs_{tot})\pi(\bar{s})\pi(\bar{b})
\]

\[
s_{tot} = \Sigma_{i,j}s_{ij} : \text{Total number of signal prediction}
\]

\[
\pi(x) = G(x|\hat{x}, \sigma_x) \quad (x = s, b) \quad \hat{x} : \text{expected mean, } \sigma_x : \text{total uncertainty}
\]
CDF Run II Preliminary, $L \leq 8.2 \text{ fb}^{-1}$

95% CL Limit/SM

LEP Excl.

- $\text{WH+ZH+VBF-jlbb 4.0 fb}^{-1} \text{ Obs}$
- $\text{WH+ZH+VBF-jlbb 4.0 fb}^{-1} \text{ Exp}$
- $\text{H-}\gamma\gamma 6.0 \text{ fb}^{-1} \text{ Obs}$
- $\text{H-}\gamma\gamma 6.0 \text{ fb}^{-1} \text{ Exp}$
- $\text{ZH-llll 7.9 fb}^{-1} \text{ Obs}$
- $\text{ZH-llll 7.9 fb}^{-1} \text{ Exp}$
- $\text{ttH MET+jets 5.7 fb}^{-1} \text{ Obs}$
- $\text{ttH MET+jets 5.7 fb}^{-1} \text{ Exp}$
- $\text{WZ+} 6.2 \text{ fb}^{-1} \text{ Obs}$
- $\text{WZ+} 6.2 \text{ fb}^{-1} \text{ Exp}$
- $\text{WH+ZH+METllb 7.8 fb}^{-1} \text{ Obs}$
- $\text{WH+ZH+METllb 7.8 fb}^{-1} \text{ Exp}$
- $\text{WH-}llb 7.5 \text{ fb}^{-1} \text{ Obs}$
- $\text{WH-}llb 7.5 \text{ fb}^{-1} \text{ Exp}$
- $\text{WH-}l\ell llb 7.9 \text{ fb}^{-1} \text{ Obs}$
- $\text{WH-}l\ell llb 7.9 \text{ fb}^{-1} \text{ Exp}$

Combined Obs
Combined Exp

SM=1

WH Search at CDF, Higgs Hunting, Orsay, 2011

July 17, 2011
Exclude at 95% CL: [100.0 - 104.5] & [156.7 - 173.8] GeV/c^2
Expect to exclude at 95% CL: [156.5 - 173.7] GeV/c^2
CDF Combination

- CDF Collaboration, up to 8.2 fb$^{-1}$
- Search for the Standard Model Higgs Boson
- Very many channels
- None sees an excess of signal over backgrounds
- We combine all channels and use a Bayesian statistical approach to compute 95% CL upper limits on the cross section of the Higgs boson
- We expect to exclude at 95% CL Higgs masses in the range : [157.0-172.2] GeV/c2
- We exclude at 95% CL Higgs masses in the ranges [100.0 -104.5] & [156.5-173.7] GeV/c2
- Stay tuned for the Tevatron combination result!
Sensitivity improved continuously more than just by increasing the integrated luminosity; showing 115 and 160 GeV/c²