Acceptance Issues in a Super B Detector

Michael Mazur INFN Pisa

SuperB Workshop V 9 May, 2007

- Guiding Principles
- Acceptance and efficiency
- Acceptance and background rejection
 - Recoil analysis
 - τ physics

Extremely Naive Scaling Laws

- For most analyses, efficiency scales ~ (acceptance)^{some power}
 - "some power" typically number of decay products in final state
 - Background rates scale at the same rate
 - Increasing acceptance behaves like increasing luminosity
- Recoil analyses are a whole new ballgame
 - Analyses dominated by backgrounds, typically lost particles
 - Background rates scale ~ (1 acceptance)^{some other power}
 - Efficiency still scales ~ (acceptance)^{some power}
 - Increasing acceptance improves the measurement *faster* than the equivalent increase in luminosity
- Recoil analyses $(B \rightarrow \tau v, B \rightarrow K/\pi vv, B \rightarrow D\tau v, B \rightarrow vv(\gamma), B \rightarrow \tau \tau, B \rightarrow lv(\gamma),...)$ are a major part of a *Super* physics program

Acceptance and Efficiency What can be gained?

- If efficiency ~ (acceptance)^{some power}, the gain is clearly largest in high multiplicity modes
- The semiexclusive BReco modes are a good candidate:
 - <N charged tracks> = 4.4 (5.2) for $B^{+(0)}$ reco, maximum 9 (8) tracks
 - <N neutral clusters> = 2.6 (1.8), maximum 8 (6) clusters
- Would like to study BReco efficiency as a function of acceptance in an arbitrary manner, but this is impossible – need full MC, algorithm tuning, infinite patience
- Instead, we will work backwards imagine that BaBar is smaller than it actually is and see how much we lose
 - Uses full BaBar MC, including boost of 9+3 and semiexcl algorithm optimized for the current machine
 - Gives a rough estimate of how much we might gain

BSemiExcl Efficiency vs EMC Forward Acceptance

BSemiExcl Efficiency vs EMC Backward Acceptance

BSemiExcl Efficiency vs Tracking Acceptance

A Benchmark Recoil Analysis: $B \rightarrow \tau v$

- We are at the frontier of $B \rightarrow \tau v$ measurement today
 - Belle: BF = 1.8x10⁻⁴ BaBar: < 0.9x10⁻⁴ Avg: 1.4x10⁻⁴
 - The B factories will establish the existence of this channel
 - Detailed study of $B \rightarrow \tau v$ requires a superB factory

The experimental signature is rather difficult: B decays to a single charged track + nothing

 $BF(\tau \rightarrow Ivv) = 18\%$ Product BF = 2.5x10⁻⁵

Background Processes to $B \rightarrow \tau v$

- Irreducible background processes have a B_{tag} candidate, a lepton, and missing momentum
- A partial list of processes that contribute...

Process	BF	Relative to signal	
$B^{+} \rightarrow \pi^{0} l \nu$	7.4 x 10 ⁻⁵	3x	Lose one or both photons
$B^+ \rightarrow \rho^0 l \nu$	1.2 x 10 ⁻⁴	5x	Lose two charged pions
$B^0 \rightarrow \pi^+ l \nu$	1.4 x 10 ⁻⁴	5x	Lose pion, misreconstruct tag charge
$B^0 \rightarrow \rho^+ l \nu$	2.3 x 10 ⁻⁴	10x	Lose pion, one or two photons, misreco tag
$B^+ \rightarrow D^0 l v$	2.2 x 10 ⁻²	900 x (!!!)	Lose all decay products of the D
$\dots D^0 \rightarrow K\pi$	3.8%	33x	Lose K,π
$D^0 \rightarrow K_L \pi^0$	1.1%	10x	Lose K_{L} , one or both photons
$D^0 \rightarrow K_s \pi^0$	1.1%	10x	Lose K _s , one or both photons
… D ⁰ →0 Prong	19.0%	150x	Lose some or all neutrals

Methodology

- Use EvtGen to simulate 5M generic B⁺B⁻ decays
 - Veto events with $B \rightarrow \tau v$ signal decay
 - Ignore all decay products of one B meson
 - Equivalent to perfect tagging with 100% efficiency
 - Equivalent to ~2 ab⁻¹
 - Select events with a true lepton (e/ μ) with the correct charge
 - Veto events with any other charged track inside the acceptance
 - 300 mrad fwd, 400 mrad bwd
 - Store all neutrals (γ/K_1) in an ntuple for offline analysis
 - Allows fast re-analysis with arbitrary smearing
 - Will show two scenarios: one "perfect" and one with the backward endcap region heavily degraded
- Starting point: B/S ratio 160:1 with no cut on E_{extra}

BG/S Ratio vs EMC Fwd Acceptance

Backward acceptance cut fixed at 600 mrad

BG/S Ratio vs EMC Bwd Acceptance

Forward acceptance cut fixed at 300 mrad

BG/S vs EMC Fwd Acceptance – Including Smearing

Backward acceptance cut fixed at 600 mrad

Acceptance Issues in a Super B Detector

BG/S vs Bwd Acc – Including Smearing

Forward acceptance cut fixed at 300 mrad

Acceptance Issues in a Super B Detector

τ Physics and Acceptance

- To search for LFV, need to reduce backgrounds as close to zero as possible
 - Just like recoil analyses, some BG channels can be eliminated kinematically if the total momentum can be reconstructed
- Benchmark LFV analysis: $\tau \rightarrow \mu \gamma$
 - BG from radiative $e^+e^- \rightarrow \mu\mu\gamma(\gamma...)$ events
 - Only ~ 1/120k $\mu\mu$ events have a photon that can fake $\tau \rightarrow \mu\gamma$
 - In these events, kinematics still closed: no missing momentum
 - Need to lose additional photons (more than one) to fake missing mass signature of a true $\tau\tau$ event (with 2 undetected neutrinos in the tag τ)

Distribution of Secondary Photons in $\mu\mu\gamma$ Events Faking $\tau \rightarrow \mu\gamma$

Total Containment in τ Events

- Most of the secondary photons are either very low energy or ~ parallel to one of the beams
- Event selection requires missing momentum to be inside the detector volume
 - If the only lost paricles are all along one beam direction (either forward or backward), event can still be vetoed
 - In order to pass this selection, need to lose a substantial amount of energy (hundreds of MeV), and need to lose particles *both* forward and backward
 - Very rare only 7 events in 1.2 GEvt of mm generated (KK2F) pass "typical" analysis cuts
 - Statistically, we cannot afford to do detailed studies like we did for $B \rightarrow \tau v$
 - But, need to lose particles in both directions means we can win be improving only one direction
 - If FWD EMC can reject mm events (good efficiency and low BG for soft g), BWD becomes less critical

Conclusions and Future Studies

- Maximizing acceptance can have a large impact on the type of physics we want to do at SuperB
- Other possible studies
 - Better understanding of efficiency gains in high-multiplicity / BReco states
 - Extend E_{extra} studies to more physics channels? Is $B \rightarrow \tau v$ a sufficient benchmark?
 - More realistic resolution models for E_{extra} studies?
 - More detailed studies on tracking / PID acceptance?
- Cost benefit analysis
 - Acceptance costs money, makes detector integration and interaction with beamline more complicated