LYSO for the SuperB Endcap

David Hitlin Paris SuperB Workshop March 9, 2007

All L(Y)SO studies by Ren-yuan Zhu

- Ren-yuan Zhu at Caltech has continued his detailed studies of scintillating crystal properties and his work with crystal growers to improve uniformity and reduce the price
- We have been using the shorthand L(Y)SO to represent the two types of crystals, LSO(Ce) and LYSO(Ce)
 - The uniformity of Ce doping, and hence light output, in large crystals is better in LYSO
 - This is apparently due to structure formation during crystal growth (Y and Ce ions have the same valence and similar size)
 - Henceforth, we will concentrate on the development of LYSO and will drop the ()

Mass-produced Crystals (new, for PDG)

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	PWO(Y)	LSO(Ce)	GSO(Ce)
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71
Melting Point (°C)	651	621	621	1280	1050	1123	2050	1950
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	0.89	1.14	1.38
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.00	2.07	2.23
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.7	20.9	22.2
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	2.20	1.82	1.85
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm)	410	550	420	300	480	425	402	440
(at peak)			310	220		420		
Decay Time ^b (ns)	230	1250	30	630	300	30	40	60
			6	0.9		10		
Light Yield ^{b,c} (%)	100	165	3.6	36	21	0.29	83	30
			1.1	3.4		.083		
d(LY)/dT ^b (%/ ºC)	-0.2	0.3	-1.3	-1.3	-0.9	-2.7	-0.2	-0.1
Experiment	Crystal	CLEO BaBar	KTeV	TAPS	L3		-	-
	Ball	BELLE		(L*)	BELLE PANDA?	PrimEx		
T THE OF		BES III		(GEIVI)		PANDA?		

a. at peak of emission; b. up/low row: slow/fast component; c. PMT QE taken buck B

10100

Crystal Density: Radiation Length

1.5 X₀ Cubic Samples:

Hygroscopic Halides

Non-hygroscopic

BGO, LSO & LYSO Samples

2.5 x 2.5 x 20 cm (18 X₀) Bar

Excitation, Photo-Luminescence, Transmission

Scintillation Light Decay Time

Recorded with Agilent 6052A digital scope

Fast Scintillators

Slow Scintillators

Temperature Dependent Light Output

LSO/LYSO light output has a small temperature coefficient

Photo-Luminescence Weighted Q.E.

Taking out QE, L.O. of LSO/LYSO is 4/200 times BGO/PWO Hamamatsu S8664-55 APD has QE 75% for LSO/LYSO

Excitation, Photo-Luminescence, Transmission

Identical transmittance, emission & excitation spectra Part of emitted light may be self-absorbed in long samples

APD readout with coincidence (²²Na)

Two Hamamatsu S6664-55 APD, Canberra 2003 BT preamplifier and ORTEC 673 shaping amplifier with shaping time 250 ns

LSO/LYSO with APD readout

γ ray-induced damage in LSO/LYSO

No damage in Photo-Luminescence

LT Recovery very slow

Transmittance damage

Light output damage

Typical light output loss: about 8% to 12% @ 1 Mrad

APD Readout

PMT Readout

Radiation-induced phosphorescence

γ ray-induced readout noise

Sample	L.Y.	F	$Q_{15 \text{ rad/h}}$	Q _{500 rad/h}	${\bf \sigma}_{_{15 \rm rad/h}}$	$\sigma_{_{500rad/h}}$
ID	p.e./MeV	µA/rad/h	p.e.	p.e.	MeV	MeV
CPI	1,480	41	6.98x10 ⁴	2.33x10 ⁶	0.18	1.03
SG	1,580	42	7.15x10 ⁴	2.38x10 ⁶	0.17	0.97

May 9, 2007

 γ --ray induced PMT anode current can be converted to the photoelectrons (Q) integrated in a 100 ns gate. Statistical fluctuations in this charge contributes to readout noise (\mathbf{O})

LSO/LYSO EMC performance summary

- Very high light output
- Good match to APD or PD
- Small temperature coefficient of emission
- Radiation damage is less of an issue than other crystals
- Energy resolution should be better at low energies than L3 BGO CMS PWO and BABAR/Belle CsI (TI) because of high light output and low readout noise: (R-y.Z. prediction):

 $2.5\%\,/\sqrt{E} \oplus 0.55\% \oplus 0.2\,/\,E$

Forward endcap layout

270 mm OFFSET	Ring in ϕ	Radius	Crystal Face	Crystal Volume	# Crystals
DEWAR		(mm)	(mm)	(cc)	
	1	597-620	24.4×31.9	171	120
	2	620-643	24.4×33.1	178	120
	3	643-666	$24.4 \times\ 29.4$	158	140
	4	666-689	24.4×30.5	164	140
BWREL COLORING TER	5	689-712	$24.4 \times\ 27.5$	148	160
	6	712 - 735	24.4×28.4	152	160
HORSESHOE LOOK	7	735 - 758	$24.4 \times\ 26.1$	140	180
	8	758-781	$24.4 \times\ 26.9$	144	180
	9	781 - 804	24.4×24.9	134	200
	10	804-827	$24.4 \times\ 25.6$	137	200
	11	827-850	24.4×23.9	128	220
	12	850-873	24.4×24.6	132	220
	13	873-896	24.4×23.2	125	240
	14	896-919	24.4×23.8	128	240

.36 m³ 2520 crystals

Endcap calorimeter R&D, design

- Next steps
 - A beam test with a ~49 crystal array, using Hamamatsu (CMS) APD readout, or equivalent
 - Form an international R&D collaboration
 - Mechanical design and prototypes of forward endcap, possible vestigial rear endcap for neutral hermeticity
 - LYSO is mechanically strong
 - Do not need to support individual crystals, à la CsI(TI) in BABAR
 - Less material between crystals should further improve energy resolution
 - Electronics: new frontend optimized for 40 ns decay time, APD readout and new DAQ design

Production capability

- There is a lot of LSO, LYSO production capacity, but the \$/cc is expensive
- Zhu has been working with Chinese crystal growers to reduce the price and improve quality (remove trace elements that are the source of phosphorescence, improve Ce doping uniformity, optimize boule size)
 - The most advanced relationship is with SIPAT in Sichuan
 - They have given us a written quote for \$15/cc
 - They have produced crystals of the required length, of a diameter large enough to yield several crystals, but have had difficulty with lengthwise cutting

LSO/LYSO Mass Production

CTI: LSO

Saint-Gobain LYSO

SIPAT LSO Quoted Price: 15 USD/cc

Ф80 х 70

Ф80 х 120

First SIPAT LYSO boule for HEP

R&D in progress to produce crystals for SuperB

25