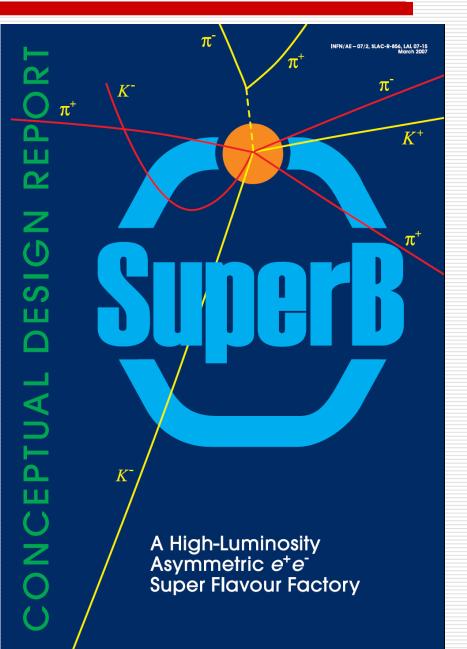


What Nowf


David Hitlin SuperB Workshop – Paris May 9, 2007

The SuperB CDR is done !

- The CDR was written by a team of committed people, including important contributions from the theory community
 - ~ 310 signers
 ~ 260 accelerator + experimental
 - \sim 50 theorists
 - What use do we make of it?
 - Primary input to the INFN Review of the project
 - Inform the larger HEP community
 - Plan an accelerator and detector R&D program
 - Begin to assemble an accelerator team and a physics collaboration

David Hitlin Super B Workshop - Paris

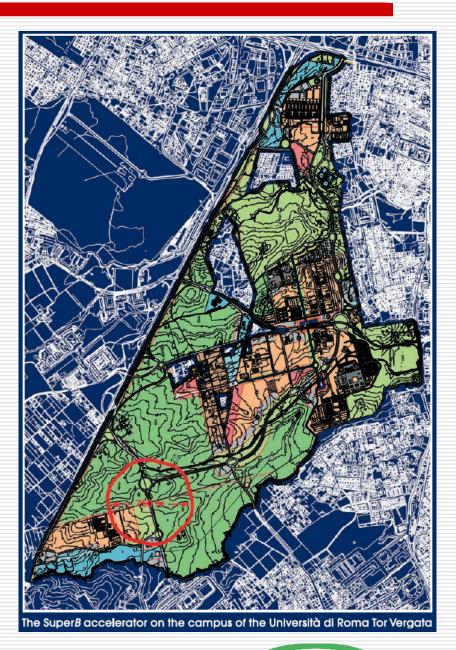
May 9, 2007

2

CDR Contributors

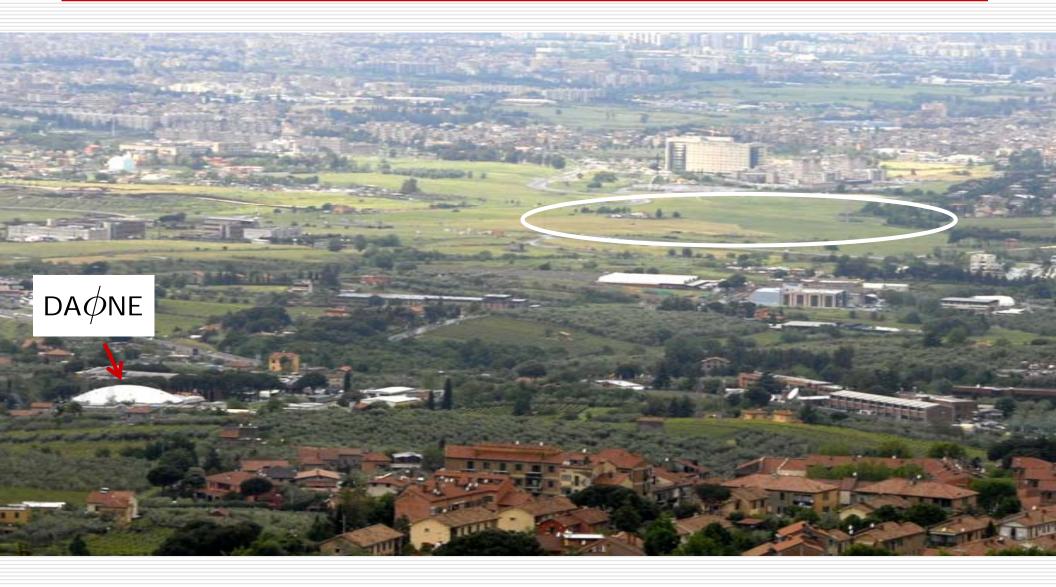
Editors

- Physics: M. Ciuchini, Tim Gershon, A. Stocchi
- Accelerator: M. Biagini, E. Paoloni, J. Seeman
- Detector: F.Forti, A. Roodman
- General: D. Hitlin, D. MacFarlane


Contributors (as complete as possible)
 T. Agoh, M. Allen, D. Asner, R. Baldini-Ferroli, E. Baracchini, S. Bettarini,
 A. Bevan, M. Biagini, F. Bianchi, I. Bigi, M. Bona, M. Boscolo, F. Bosi, L. Bosisio,
 Y. Cai, G. Calderini, G. Cavoto, R. Chehab, M. Ciuchini, J. Dingfelder, A. Drago,
 G. Dubois-Felsmann, Y. Fedala, A. Fisher, F. Forti, P. Gambino, T. Gershon,
 M. Giorgi, S. Guiducci, G. Haller, S. Heifets, D. Hitlin, G. Isidori, M. Kelsey, I. Koop,
 E. Krachenko. J. Krebs, D. Leith, E. Levichev, V. Lubicz, S. Luitz, V. Lutz, P. Kim,
 D. MacFarlane, R.Mankel, G.Marchiori, M.Massa, M. Mazur, F.Morsani, M.Negrini,
 N. Neri, A. Novokhatski, K. Ohmi, Y. Ohnishi, E. Paoloni, P. Paradisi, B. Petersen,
 M. Pierini, M. Pivi, S. Playfer, F. Porter, F.Raffaelli, P. Raimondi, B. Ratcliff, V.Re,
 F. Renga, A. Roodman, G. Rizzo, S. Robertson, M. Roney, P. Roudeau,
 J. Schwiening, J. Seeman, D. Shatilov, L. Silvestrini, F. Simonetto, V. Soskov,
 A. Stocchi, M. Sullivan, J. Va'vra, C. Vaccarezza, A. Variola, M. Venturini,
 A. Vivoli , U. Wienands, W. Wisniewski, A. Wolski, R-y. Zhu, M. Zobov, F. Zomer,

The site of SuperB on the Tor Vergata campus

- Quite literally a "green field" site
- A lot of preparatory work is needed
 - Detailed siting study
 - Geological studies for tunnel
 - Ground vibration tests
 - Design and location of support buildings, including the interaction region
 - Provision of utilities
 - Electrical power
 - Chilled water
- Laboratory infrastructure
 - Human resources
 - Engineering
 - Health and safety



David Hitlin Super B Workshop - Paris

May 9, 2007

SuperB location on the Tor Vergata campus

David Hitlin Super*B* Workshop - Paris

May 9, 2007

Spreading the gospel

- It is important that we immediately tackle the job of convincing the community that an investment of this size in heavy flavor physics is worthwhile
- Due to the possible delay of the predicted physics start date of the ILC until the "mid-twenties", there will assuredly be a reexamination, in the US, Europe and Japan, of middle term physics opportunities, such as very high statistics heavy flavor studies
 - We must make the physics case carefully and well
 - As clearly demonstrated by BABAR, Belle and CLEO, a new facility will produce a great wealth of physics
 - This is NOT, however, in my opinion, the best route to making a convincing case
 - □ What we need is a "sound bite" justification

By this I mean a single, really good, rationale for Super*B* that can be stated in a few words

Choose your soundbite

"Determine the mechanism of SUSY-breaking that explains the new phenomena found at the LHC."

"Find the mechanism of *CP* violation beyond the Standard Model that can account for the matter-antimatter asymmetry of the universe."

"Search for beyond-the-Standard-Model phenomena that cannot be studied at the LHC."

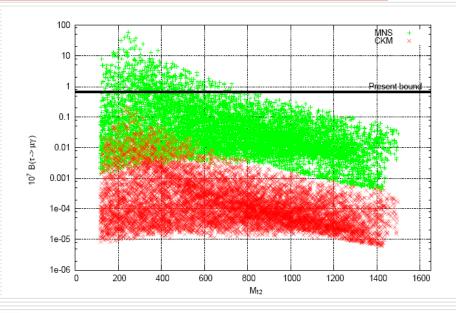
"Explain why we live in a matter-dominated universe" (somewhat problematic due to dark matter, but we used it successfully for PEP-II/BABAR)

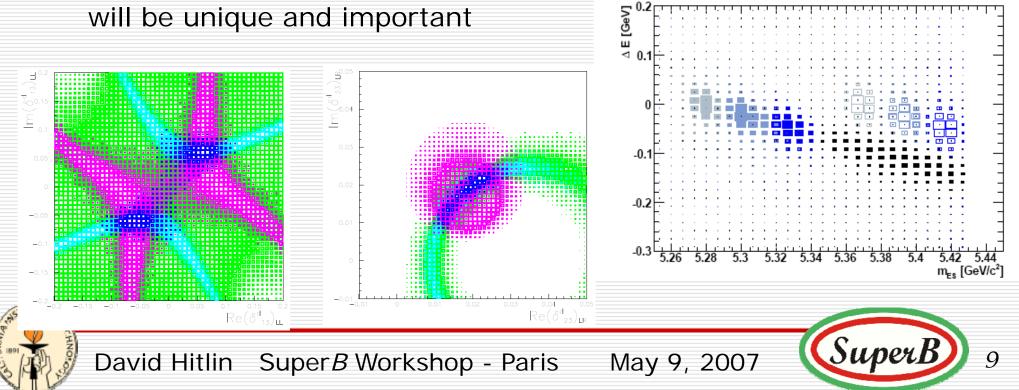
Additional soundbite suggestions are welcome, and needed

Outreach

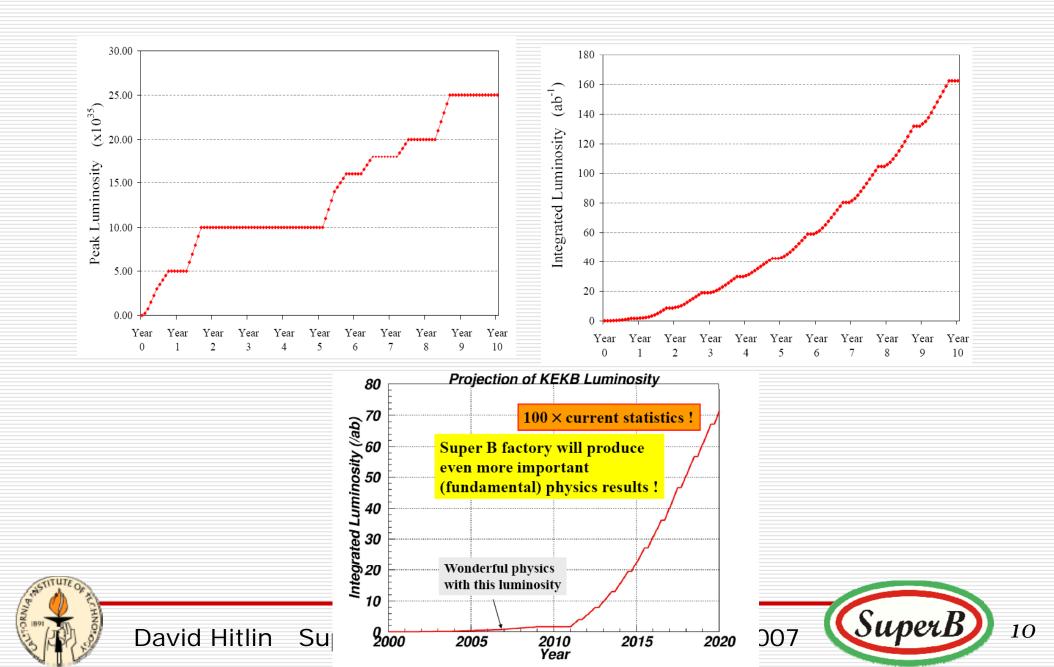
- We have discussed in the Steering Committee the need for explanatory material more likely to be read through by large numbers of people than the CDR
 - A document aimed at the scientific community (perhaps a shortened version of the CDR Introduction)
 - A document aimed at the general public
 - A "one-pager" that might be read by the very busy people that dispense money
- This must be done in a coherent way with input from all the countries that may have need of such material, and output that serves the needs of the different countries
- Neal Calder in the SLAC Public Information Office has been contacted— he will meet with his counterparts in other countries to plan a detailed campaign

David Hitlin Super*B* Workshop - Paris


May 9, 2007



SuperE


Physics

- The CDR reminds us, while we search for our soundbite, that Super B really is a Super Heavy Flavour Factory
- We can find the scale of new flavour physics using *B* decays
- Having polarized beams and studying τ and charm physics at high energies and near threshold will be unique and important

Scenario for data accumulation

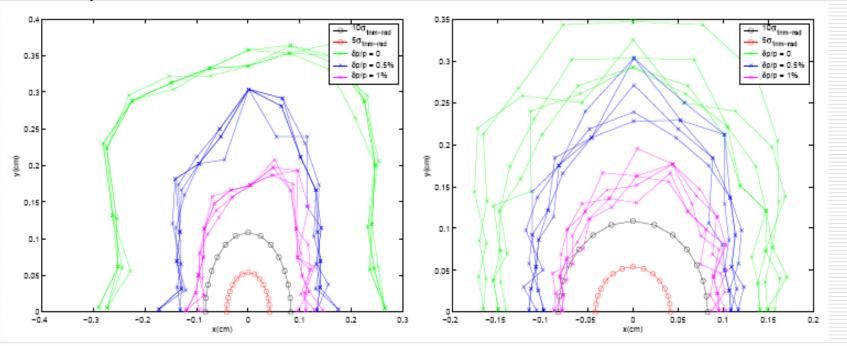
SuperB/ILC synergy

- □ Super*B* will be the first low-emittance, circular collider
 - Since the lattice is "wiggler-dominated", the circumference is flexible, as long as there is sufficient wiggler length to produced the required emittance
- The ILC Damping Ring design, which forms the basis of the SuperB lattice, faces a nearly identical set of technical issues:
 - Low emittance: simulation, tolerances, feedback, injection, x-ray fan power density,
 - High currents: vacuum, cooling, feedback, ...
 - Electron cloud coatings, grooves, solenoids,
 - Polarization: production, acrobatics, preservation, ...
- □ Super*B* does not face the significant problem of fast kickers
- [PEP-II and KEK-B have come closer to facing many of these issues than any other working machines]
- The synergy between SuperB and ILC could be mutually beneficial

David Hitlin Super B Workshop - Paris

The SuperB rings closely resemble the ILC damping rings

Unit	$\mathrm{Super}B$	Super B	ILC
	LER	HER	DRs
Beam energy (GeV)	4	7	5
Circumference (m)	2249	2249	6695
Particles per bunch	6.16×10^{10}	3.52×10^{10}	$2 imes 10^{10}$
Number of bunches	1733	1733	2767
Average current (A)	2.28	1.30	0.40
Horizontal emittance (nm)	1.6	1.6	0.8
Vertical emittance (pm)	4	4	2
Bunch length (mm)	6	6	9
Energy spread $(\%)$	0.084	0.09	0.13
Momentum compaction	$1.8 imes 10^{-4}$	$3.1 imes 10^{-4}$	4.2×10^{-4}
Transverse damping time (ms)	32	32	25
RF voltage (MV)	6	18	24
RF frequency (MHz)	476	476	650


David Hitlin Super B Workshop - Paris

May 9, 2007

The dynamic aperture question

- The dynamic aperture studies in the CDR do not include the crabbed waist final focus sextupoles
 - Studies for SuperKEK-B have found problems with injection and dynamic aperture with the crabbed waist. This is not a general statement, but is particular to a specific lattice

This calculation with crabbed waist sextupoles has now been done for Super*B*. We must document and propagate the result

A SuperB repository

- Now that we have a baseline of information collected in the CDR, it is important that we set up a database as a repository for notes on new and ongoing work
 - We presumably need three series:
 - Accelerator
 - Detector

Physics

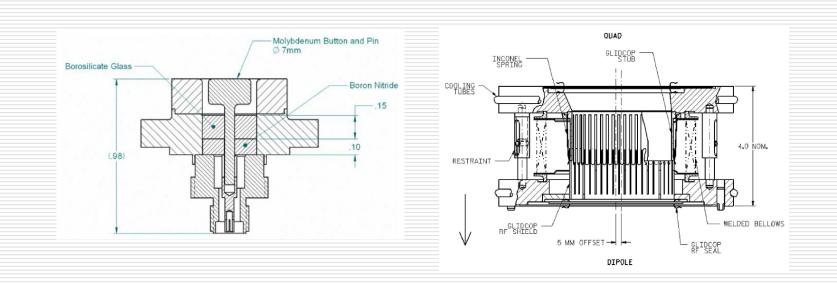
- A repository for presentation materials, conference writeups, etc., should also be established
- Perhaps we can adapt the PEP-II/BABAR tools, rather than reinvent the wheel
- Perhaps the program used to setup the SuperB website already has such tools built in

David Hitlin Super B Workshop - Paris

The reuse of PEP-II and BABAR components

Provides major cost and design effort savings Needs another round of detailed engineering studies to firm up the estimates of savings and to plan disassembly and refurbishment details

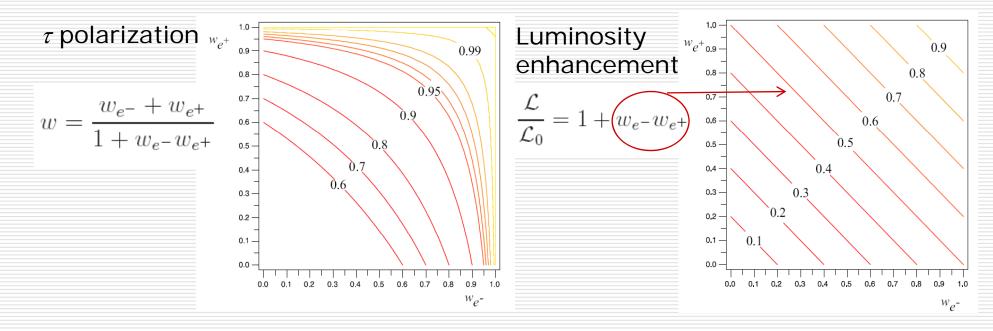
Table 3-40. SuperB magnet summary.					
Type	Length	Required	Extant	Build	Design
	(m)	for $\operatorname{Super} B$	at PEP-II	new	
Dipole	0.45	144	194	0	
Dipole	0.75	144	0	144	PEP-II (lamin.)
Dipole	5.4	176	194	0	
Dipole	2	4	6	0	soft bends
Quadrupole	0.43	341	353	0	
Quadrupole	0.5	70	0	70	PEP-II or new
Quadrupole	0.56	255	202	53	PEP-II, new coil
Quadrupole	0.56	32	0	32	new (high field)
Quadrupole	0.73	138	81	57	PEP-II
Sextupole	0.25	452	188	264	PEP-II (2 coil configs.)
Sextupole	0.6	8	0	8	new



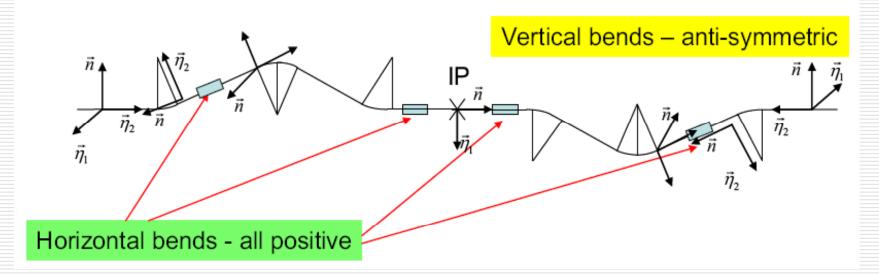
David Hitlin Super B Workshop - Paris

May 9, 2007

New PEP-II components

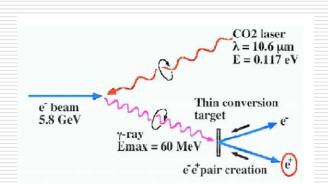

- The CDR discusses the use of newly developed PEP-II components, such as bellows shielding and BPM buttons in the Super B rings
 - This gives us a major headstart, but details must be looked at in the context of an overall engineering design, which does not yet exist

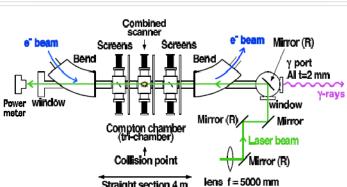
Polarization


- □ Having polarized τ 's allows searches for a τ edm in production or CP violation in τ decay
- Having both polarized e⁻ and e⁺ is advantageous, but polarizing the electron beam is far easier

Polarization schemes

- Several techniques of achieving longitudinal polarization at the IP are discussed in the CDR
 - This is a subtle and delicate problem
 - Schemes will work only in the 10 GeV region




Production of polarized positrons is a substantial R&D project, and in fact, another area of synergy with ILC R&D

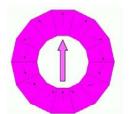
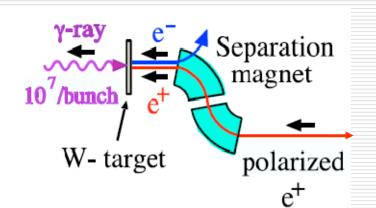
The ILC polarized positron source upgrade

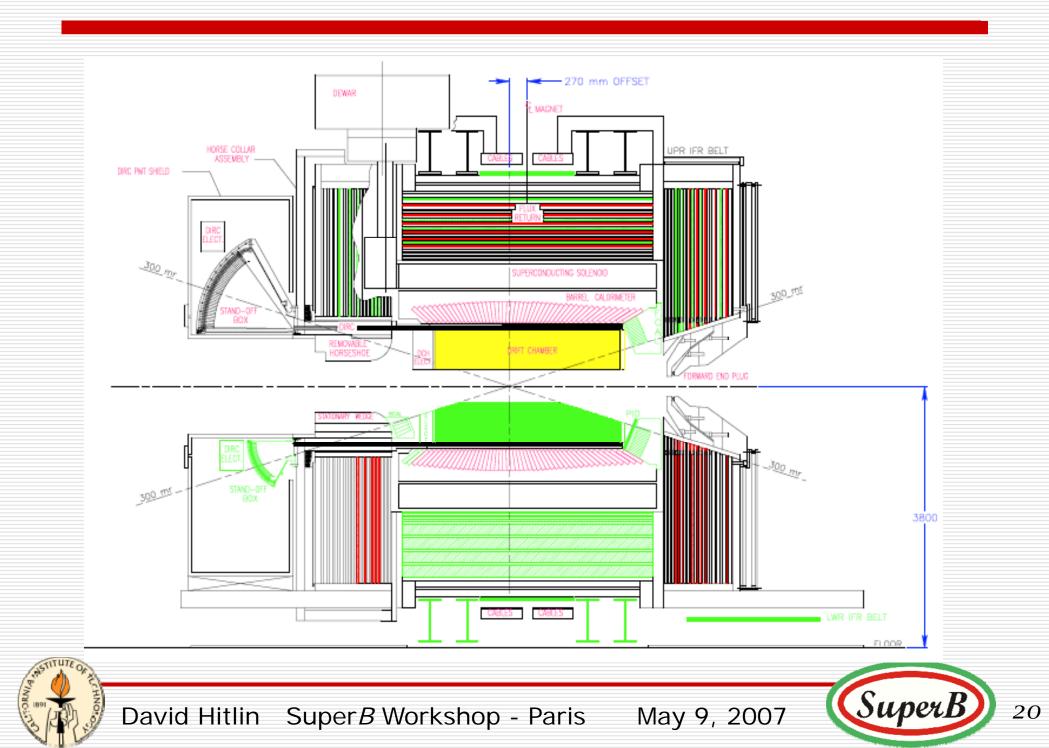
- Produce polarized 20 MeV photons in a helical undulator
 - Double-wound superconducting solenoid
 - Rotated permanent magnet dipoles sections
 - Laser Compton scattering

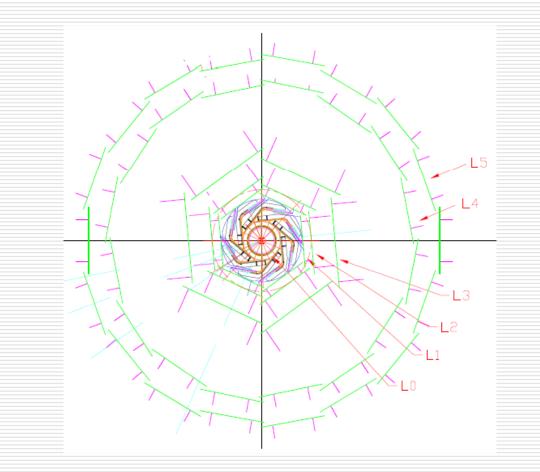
Straight section 4 m

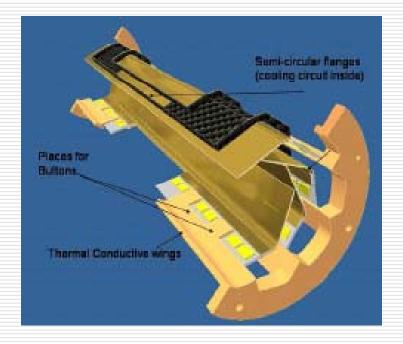


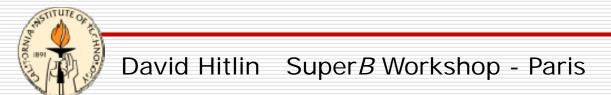
Figure 5.4: Schematic of wires wrapped in a helix around a former showing different current directions [193].

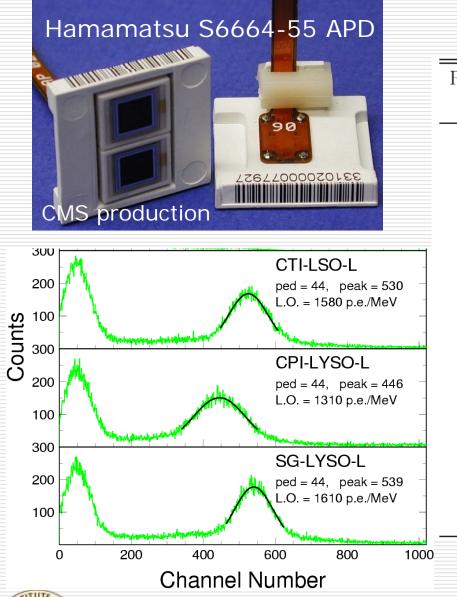

Figure 5.6: Dipole field created by many permanent-magnets (PM) blocks arranged in a ring. Many rings are stacked together and rotated to create the helical field [193].


~60% polarization can be achieved


May 9, 2007

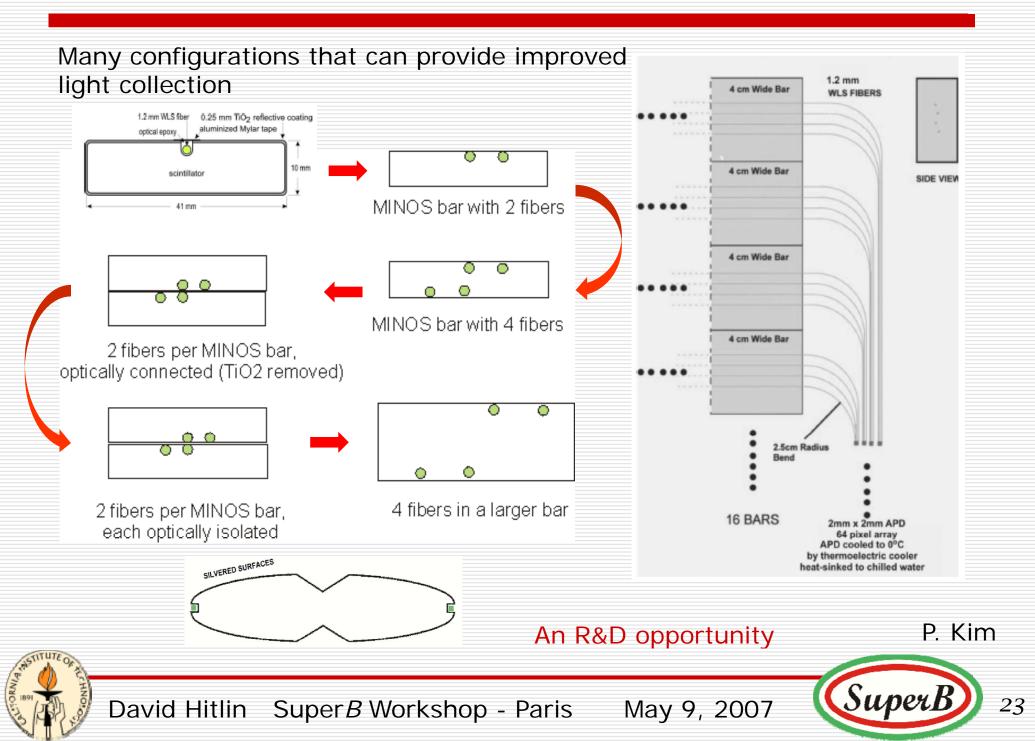

David Hitlin SuperB Workshop - Paris

Layer Ø mechanics



May 9, 2007 SuperB 21

Work is needed on LYSO development and mechanics


Ring in ϕ	Radius	Crystal Face	Crystal Volume	# Crystals
	(mm)	(mm)	(cc)	
1	597 - 620	24.4×31.9	171	120
2	620-643	24.4×33.1	178	120
3	643-666	$24.4 \times\ 29.4$	158	140
4	666-689	24.4×30.5	164	140
5	689-712	24.4×27.5	148	160
6	712 - 735	24.4×28.4	152	160
7	735 - 758	$24.4 \times\ 26.1$	140	180
8	758-781	$24.4 \times\ 26.9$	144	180
9	781-804	24.4×24.9	134	200
10	804-827	$24.4 \times\ 25.6$	137	200
11	827-850	24.4×23.9	128	220
12	850-873	24.4×24.6	132	220
13	873-896	24.4×23.2	125	240
14	896-919	24.4×23.8	128	240

David Hitlin Super B Workshop - Paris

May 9, 2007

22

The Endcap IFR detectors: scintillator bars à la MINOS

How much?

Costs are presented "ILC-style", with replacement value for reusable PEP-II/*BABAR* components

	EDIA	Labor	M&S [k€]	Replacement value [k€]	
Accelerator	452	291	191,166	126,330	
Site	119	138	105,700	0	
Detector	283	156	40,747	46,471	
			fro Dis ref shi inc	lue of reusable items on PEP-II and <i>BABAR</i> sassembly, crating, furbishment and ipping costs are cluded in columns the left	
David Hitlin S	uper <i>B</i> Work:	shop - Paris	May 9, 20	007 SuperB 24	

Conclusions

- We have just concluded a very successful CDR writing exercise
- We now need to use the CDR and other less weighty documents to convince our peers of the value of the SuperB project over the next decade to the HEP community
- As we do this, we have to expand the base of the accelerator and experimental collaborations
 - R&D projects are a classic vehicle, but they require some seed money
 - At the same time, access to increased engineering resources is sorely needed

May 9, 2007