

- Current status of measurements.
- SU(2) based methods.
 - ρρ, ππ, πππ.
- SU(3) based methods.
 - ρρ, ππ, a₁π.
- Precision with 75 ab⁻¹.
 - Limiting uncertainties at Super-B.
- Potential of LHCb.
- Conclusion.

- Current status of measurements.
- SU(2) based methods.
 ρρ, ππ, πππ.
- SU(3) based methods.
 - ρρ, ππ, **a**₁π.
- Precision with 75 ab⁻¹.
 - Limiting uncertainties at Super-B.
- Potential of LHCb.
- Conclusion.

Current status of measurements.

- Current status of measurements.
- SU(2) based methods.
 - ρρ, ππ, πππ.
- SU(3) based methods.
 ρρ, ππ, a₁π.
- Precision with 75 ab⁻¹.
 - Limiting uncertainties at Super-B.
- Potential of LHCb.
- Conclusion.

SU(2) based methods.

 SU(2) isospin relates the different B→hh' amplitudes (h, h' = π, ρ): Gronau London (GL) method.

- $\delta \alpha^{ij} = \alpha^{ij}_{eff} \alpha$ parameterise penguin pollution in +and 00 charged final states.
- Relationship to S and C:

$$\sin(2\alpha_{eff}^{+-}) = \frac{S^{+-}}{\sqrt{1 - (C^{+-})^2}},$$
$$\sin(2\alpha_{eff}^{00}) = \frac{S^{00}}{\sqrt{1 - (C^{00})^2}},$$
7

Adrian Bevan

SU(2) based methods: ρρ

Projections at 2ab⁻¹

assumed to be the final combined B-factory luminosity.

Adrian Bevan

Assume $C^{00} = C^{+-} = 0$ and $\alpha = 95^{\circ}$ for this study. 8

SU(2) based methods: ρρ

Projections at 2ab⁻¹

B-factory luminosity.

Adrian Bevan

a= 95° for this study.

9

SU(2) based methods: $\pi\pi$

Projections at 2ab⁻¹

With 2ab⁻¹

- Solution at 0° excluded using external information: Botella & Nebot arXive:0704.0174 UTfit hep-ph/0701204.
- Region near 40° excluded at 90% CL.
- Start excluding mirror solution space at 90% CL.

assumed to be the final combined B-factory luminosity.

Adrian Bevan

SU(2) based methods: $\pi^+\pi^-\pi^0$

- Theoretically clean, but experimentally challenging TD Dalitz plot analysis: The Snyder Quinn (SQ) method.
- Multi-parameter fit that is difficult to sensibly project to higher luminosities.

 No studies available with current statistics to understand systematic uncertainty limits of Dalitz model assumed etc.

- Current status of measurements.
- SU(2) based methods.
 ρρ , ππ, πππ.
- SU(3) based methods.
 - ρρ, ππ, a₁π.
- Precision with 75 ab⁻¹.
 - Limiting uncertainties at Super-B.
- Potential of LHCb.
- Conclusion.

SU(3) based methods: ρρ

 Relate K^{*0}ρ⁺ to the penguin contribution in ρ⁺ρ⁻ (BGRS):

SU(3) based methods: $\pi\pi$

- Relate Kπ to the penguin contribution in π⁺π⁻
 (GR):
 - Not as precise as **BGRS**.
 - 20% SU(3) breaking error.

Different values of α and δ correspond to different points in the S_{$\pi\pi$} - C_{$\pi\pi$} plane.

The measurements of $S_{\pi\pi}$ and $C_{\pi\pi}$ are used to extract constraints on α .

$$\sigma(\alpha) \sim 4^{\circ}(\text{expt.})^{+10}_{-8}^{\circ}(\text{th.})$$

Adrian Bevan

Gronau and Rosner arXiv:0704.3459 [hep-ph]

- BaBar recently performed TDCPV measurement of $a_1\pi$.
 - $\alpha_{eff} = 78.6 \pm 7.3^{\circ} \rightarrow$ as good $\rho\rho/\rho\pi$, but need to control penguin contribution to measure α .
- Proposal from Gronau and Zupan et al. to constrain penguins with SU(3): (GZ)
 - Need
 - B→K₁(1270)π
 - B→K₁(1400)π
 - $B \rightarrow a_1 K_{(s)}$

to determine α

- To early to make quantitative statements.

- Current status of measurements.
- SU(2) based methods.
 ρρ, ππ, ρπ.
- SU(3) based methods.
 ρρ, ππ, a₁π.
- Precision with 75 ab⁻¹.
 - Limiting uncertainties at Super-B.
- Potential of LHCb.
- Conclusion.

Predictions using the **GL** method.

- Measuring S⁰⁰ and C⁰⁰ means we can achieve a precision of $\sigma(\alpha)=0.75^{\circ}$ with the **GL** method from $\rho\rho$ decays.
- Constrain penguins using CP violation measurements in $\rho^0 \rho^0$ to achieve this.
- This is the most precise measurement of α obtainable at Super-B from the methods studied.

Assume $C^{00} = C^{+-} = 0$ and $\alpha = .95^{\circ}$ for this study. ¹⁷ <u>\</u>

- SU(3) based BGRS method
 - Currently most precise single determination: $\sigma(\alpha) \sim 7^{\circ}$.
 - Error is dominated by SU(3) breaking uncertainties at 75ab⁻¹.

Project, current, BaBar measurements

Adrian Bevan

to higher luminosity. 19

New tricks for old methods

- $\frac{1000}{B^0} = \frac{\pi^0}{\pi^0}$
- The ππ isospin analysis isn't overconstrained like ρρ: Can't measure S⁰⁰ with a 4 γ final state.
 - But ... can use external photon conversion to vertex $B \rightarrow \pi^0 \pi^0$. So we can measure S⁰⁰.

Limiting uncertainties at Super-B

• ππ

$$\sigma_{\rho\rho}(\alpha) = 0.9 \sim 1.9 \text{ (expt)} \pm \text{ (th.)}$$

- $\Delta I = 5/2$ amplitudes to test for.
- SU(2) breaking in $\pi^0 \eta \eta'$ mixing.
- Should be dominated by experimental uncertainty.

$$\sigma_{\rho\rho}(\alpha) = 0.75 \text{ (expt) } \pm 0.4 \text{ (EWP)}$$

- I=1 amplitudes to test for.
- $\Delta I = 5/2$ amplitudes to test for.
- ρ - ω mixing to include in ρ + ρ ⁰ and ρ ⁰ ρ ⁰ measurements.
- SU(3) method has a precision of O(2)°: Limited by theory uncertainties.
- $\rho \pi$ $\sigma_{\rho \pi}(\alpha) =_{-13}^{+45}$ (Current BaBar Error)
 - Too complicated to make sensible projections for at the moment.

Adrian Bevan

Limiting uncertainties at Super-B

$$\sigma_{\rho\rho}(\alpha) = 0.9 \sim 1.9 \text{ (expt)} \pm \text{(th.)}$$

ππ

ΔI=5/2 amplitudes to test for. SU(2) breaking in π^0 –η–η' mixing. Should be dominated by experimental uncertainty.

See the following Refs. (not an exhaustive list) for more details on sources of theoretical uncertainty: Gronau and Zupan PRD71 074017 (2005); Gardner PRD72 034015 (2005); hepph/9906269; Botella et al. PRD73 071501 (2006) ...

•
$$\rho \rho$$
 $\sigma_{\rho \rho} (\alpha) = 0.75 \text{ (expt) } \pm 0.4 \text{ (EWP)}$

- $\Delta I=5/2$ amplitudes to test for.
- ρ - ω mixing to include in $\rho^+\rho^0$ and $\rho^0\rho^0$ measurements.

SU(3) method has a precision of O(2)°: Limited by theory uncertainties.

 $\sigma_{\alpha\pi}(\alpha) = -13^{+45}$ (Current BaBar Error)

Too complicated to make sensible projections for at the moment.

- Current status of measurements.
- SU(2) based methods.
 ρρ, ππ, ρπ.
- SU(3) based methods.
 - ρρ, ππ, **a**₁π.
- Precision with 75 ab⁻¹.
 - Limiting uncertainties at Super-B.
- Potential of LHCb.
- Conclusion.

- Most thoroughly studied channel:
 - $B \rightarrow \pi^+ \pi^- \pi^0$
 - ~10° precision from 2fb⁻¹ (1yr) using the SQ method for measuring α .
 - ~4.5° with 10fb⁻¹.
- Other accessible channels:
 - Only list all charged final states
 - $\pi^+\pi^-$: contribute to the **GL** analysis
 - $\rho^0\rho^0\,$: contribute to the GL analysis
 - $a_1\pi$: contribute to the **GZ** analysis

- So we can expect σ~4.5° to be a worst case scenario with 10fb⁻¹.
- Should also note the upgrade potential of LHCb.

Concusion

- SU(2) Methods:
 - GL with $\pi\pi$ using S^{00:} $\sigma(\alpha) = 0.9-1.9^{\circ}$.
 - GL with $\rho\rho$ using S⁰⁰ and C⁰⁰: $\sigma(\alpha) = 0.75^{\circ}$.
 - **– SQ** with $\rho\pi$... wait and see.
- SU(3) Methods:
 - The **BGRS** method for $\rho\rho$ currently gives the most stringent constraints than the **GL** result. Expect $\sigma(\alpha)$ ~2° from a Super-B factory.
- Sub 1°
 - The measurement of α will be a 3-step process: $\pi\pi+\rho\pi+\rho\rho$.

• Current status of measurements.

- Conclusion.

- For the projections summarised here:
 - The statistical uncertainties have been scaled by $\sqrt{N}.$
 - The systematic uncertainties have been split into contributions that:
 - do not scale (e.g. detector performance: B counting, π^0 , tracking, PID uncertainties etc.,
 - and those that do scale by \sqrt{N} .