Measuring the angle B at a Super B factory

Katherine George

Queen Mary, University of London

15th Super B Workshop Paris, May 9-11, 2007

Overview

- o Measurements of sín2b, cos2b, and límíts on b from:
 - o B from charmonium,
 - 'Complementary measurements' of B from 'open-charm' and other charmoníum,
 - o 'alternative measurements' of B from penguins.

and extrapolation to higher luminosities.

Many ways to measure sin 2B and cos 2B (More details in following slides ...)

 $b \rightarrow c\overline{c}s$ Many ways to measure sin 2B and cos 2B (More details in following slides ...)

charmoníum

 $J/\psi K_S, \psi(2S)K_S, \chi_{c1}K_S$ $\eta_c K_S, J/\psi K_L$ $J/\psi K^{*0}(K_S\pi^0)$

 $b \rightarrow c\overline{c}s$ Many ways to measure sin 2B and cos 2B (More details in following slides ...)

charmoníum

 $J/\psi K_S, \psi(2S)K_S, \chi_{c1}K_S$ $\eta_c K_S, J/\psi K_L$ $J/\psi K^{*0}(K_S\pi^0)$

$b \rightarrow c\overline{c}s$ Many ways to measure sin 2b and cos 2b (More details in following slides ...)

charmoníum

 $b \rightarrow c \overline{c} d$ charmor charmoníum

 $J/\psi K_S, \psi(2S)K_S, \chi_{c1}K_S$ $\eta_c K_S, J/\psi K_L$ $J/\psi K^{*0}(K_S\pi^0)$

 $D^{(*)+}D^{(*)-}, J/\psi\pi^0$

$b \rightarrow c\overline{c}s$ Many ways to measure sin 2b and cos 2b (More details in following slides ...)

charmonium

 $J/\psi K_S, \psi(2S)K_S, \chi_{c1}K_S$

 $\eta_c K_S, J/\psi K_L$

 $J/\psi K^{*0}(K_{\rm S}\pi^0)$

 $b \rightarrow c \overline{c} d$ charmor charmoníum

 $b \rightarrow s\bar{s}s \in b \rightarrow sdd$

penguín domínated

 $\phi K_S, K^+ K^- K^0,$ $K_S K_S K_S, \eta' K_S, K_S \pi^0,$ $\omega K_S, f_0 K_S$

Sín2b from b→ccs decays

Sín2B from b→ccs

0 Belle, 535 M BB pairs. PRL 98 (2007) 031802)

sínzb from b→ccs

sínzb from b→ccs

The 4-fold ambiguity in B - resolved?

o Reduce 4-fold ambiguity to 2-fold ambiguity (B $\rightarrow \pi/2$ -B) by measuring (the sign of) cos2B. Negative cos2B ruled out by:

we already have a 1° measurement of B - so what next?

- o Achille's talk (yesterday), and the following talks on α and γ will talk about whether 1° measurements of these angles are possible.
 - We (β) are already there (expect <1° by the end of βfactory running)
 - o Question: Why push further?

We already have a 1° measurement of B - why push further ?

o Answers.

we already have a 1° measurement of B - why push further ?

- o Answers.
 - o (a) We can we already know how to do these measurements.
 - o If nothing else its 'a really dumb (?) sanity check'.

We already have a 1° measurement of B - why push further ?

o Answers.

- o (a) We can we already know how to do these measurements.
 - o If nothing else its 'a really dumb (?) sanity check'.
- 0 (b) The constraints from indirect measurements will

also be very stringent.

Direct measurement of Φ_d (=2 β in the SM) is tested against indirect prediction

which is fixed by R_b (the V_{ub}/V_{cb} side)

 $R_{\rm b}$ now known to 7% from $V_{\rm ub}$ inclusive

 \rightarrow translates into $\beta^{\text{ indirect}}$ of 1.6° Compare with (Super-)LHCb *stat* error:

(Super-)LHCb	2 fb ⁻¹	10 fb ⁻¹	100 fb ⁻¹
σ (stat)	0.66°	0.30°	0.09°

Looks OK... but precision on R_b will -1improve as lattice improves V_{ub} exclusive. -1 -0.5 Of Must plan for R_b precision of ~2% $\rightarrow \beta$ indirect error then 0.5°

Taken from Guy Wilkinson's talk at the January 2007 LHCb Upgrade Workshop.

we already have a 1° measurement of B - why push further?

o Answers.

- o (a) We can we already know how to do these measurements.
 - o If nothing else its 'a <u>really dumb</u> (?) sanity check'.
- (b) The constraints from indirect measurements will also be very stringent.

Direct measurement of Φ_d (=2 β in the SM) is tested against indirect prediction which is fixed by R_b (the V_{ub}/V_{cb} side)

 R_b now known to 7% from V_{ub} inclusive

 \rightarrow translates into $\beta^{\text{ indirect}}$ of 1.6° Compare with (Super-)LHCb *stat* error:

(Super-)LHCb	2 fb ⁻¹	10 fb ⁻¹	100 fb ⁻¹
σ (stat)	0.66°	0.30°	0.09°

Looks OK... but precision on R_b will improve as lattice improves V_{ub} exclusive. Must plan for R_b precision of ~2% $\rightarrow \beta^{indin}$

Katherine George. 5th Super B

Taken from Guy Wilkinson's talk at the January 2007 LHCb Upgrade Workshop.

SuperB CDR

Observable	B Factories (2 ab^{-1})	$SuperB$ (75 ab^{-1})
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$ V_{cb} $ (inclusive)	1% (*)	0.5% (*)
$ V_{ub} $ (exclusive)	8% (*)	3.0% (*)
$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)

we already have a 1° measurement of B - why push further ?

- o Answers.
 - o (a) We can we already know how to do these measurements.
 - o If nothing else its 'a really dumb (?) sanity check'.
 - (b) The constraints from indirect measurements will also be very stringent.
 - (c) Although systematics limited, improvements in detectorrelated systematics will benefit many other analyses.

We already have a 1° measurement of B - why push further ?

- o Answers.
 - o (a) We can we already know how to do these measurements.
 - If nothing else its 'a <u>really dumb</u> (?) sanity check'.
 - (b) The constraints from indirect measurements will also be very stringent.
 - (c) Although systematics limited, improvements in detectorrelated systematics will benefit many other other analyses.
 - o (d) it's a 'standard candle'
 - (I) Comparison with complementary measurements of B from b→ccd and b→cud.
 - (2) Comparison with penguin b→sqq modes a 'standard candle' assumes increased importance as precision on penguin B measurements increases.

We already have a 1° measurement of B - why push further ?

- o Answers.
 - o (a) We can we already know how to do these measurements.
 - If nothing else its 'a really dumb (?) sanity check'.
 - (b) The constraints from indirect measurements will also be very stringent.
 - (c) Although systematics limited, improvements in detectorrelated systematics will benefit many other other analyses.
 - o (d) it's a 'standard candle'
 - (I) Comparison with complementary measurements of B from b→ccd and b→cud.
 - (2) Comparison with penguin b→sqq modes a 'standard candle' assumes increased importance as precision on penguin B measurements increases.
- Address (c) and (d) in later slides.
- There are others which I may have forgotten ξ opinion may vary as to the relative importance of the above answers.

(Theory & controlling penguins) systematics limited

o Expected precision for sin2b $(J/\psi K_s^o)$ - CDR Table 2-1.

Observable	HFAG (~840 fb-1)	B Factories (2 ab^{-1})	$\mathrm{Super}B~(75~\mathrm{ab}^{-1})$	
$\sin(2\beta) (J/\psi K^0)$	0.026	0.018	0.005 (†) <	

(Theory ξ controlling penguins) systematics

) E	xpected precísion	n for sínzb (J/ψK ^o s) - CDR Tab	ole 2-1.
	Observable	HFAG (~840 f0-1)	B Factories (2 ab^{-1})	$SuperB$ (75 ab^{-1})
	$\sin(2\beta) (J/\psi K^0)$	0.026	0.018	0.005 (†)

- o Small Standard Model theoretical uncertainty...
 - ο $\Delta S_{J/\psi KS} = S_{J/\psi KS} sin 2b ~ O(10^{-3})$. Li and Mishima. hep-ph/0610120.
 - o $\Delta S_{J/\psi KS} \equiv S_{J/\psi KS}$ sín2b ~O(10⁻⁴). Boos et. al. Phys. Rev. D. 70 036006 (2006) o Not important for the (non-super) § superB-factories.

(Theory & controlling penguins) systematics Infor singh (1/11/12) - CDD Table 2 1

o Expected precision for sin2b $(J/\psi K_s^o)$ - CDR Table 2-1.

Observable	HFAG (~840 fb-1)	B Factories (2 ab^{-1})	$\operatorname{Super} B$ (75 ab^{-1})	
$\sin(2\beta) (J/\psi K^0)$	0.026	0.018	0.005 (†)	/

- o Small Standard Model theoretical uncertainty...
 - ο $\Delta S_{J/\psi KS} = S_{J/\psi KS} sin 2b ~ O(10^{-3})$. Li and Mishima. hep-ph/0610120.
 - o $\Delta S_{J/\psi KS} \equiv S_{J/\psi KS}$ sín2b ~O(10⁻⁴). Boos et. al. Phys. Rev. D. 70 036006 (2006) o Not important for the (non-Super) § SuperB-factories.
- o Controlling our penguins with the "data-driven" method using $J/\psi\pi^{o}$ to control the penguin contribution in $J/\psi\kappa^{o}_{s.}$ ciuchini et. al. PRL 95, 221804 (2005).
 - LHCb approach (Fleischer, Eur. Phys. J. C10 (1999) 299) is to try to measure CP asymmetries in $\mathbb{B}^{o}_{s} \rightarrow J/\Psi K^{o}_{s}$ and relate these to $\mathbb{B}^{o} \rightarrow J/\Psi K^{o}_{s}$ through U-spin. Taken from Guy Wilkinson's talk at the January 2007 LHCb upgrade Workshop.
 - Precísion of approach has not yet been evaluated.

(Theory ξ controlling penguins) systematics

límíted

o Expected precision for sin2b $(J/\psi \kappa_s^o)$ - CDR Table 2-1.

Observable	HFAG (~840 fb-1)	B Factories (2 ab^{-1})	$\operatorname{Super} B$ (75 ab^{-1})
$\sin(2\beta) (J/\psi K^0)$	0.026	0.018	0.005 (†)

- o Small Standard Model theoretical uncertainty...
 - ο $\Delta S_{J/\psi KS} = S_{J/\psi KS} sin 2b ~ O(10^{-3})$. Li and Mishima. hep-ph/0610120.
 - o $\Delta S_{J/\psi KS} \equiv S_{J/\psi KS}$ sín2b ~O(10⁻⁴). Boos et. al. Phys. Rev. D. 70 036006 (2006) o Not important for the (non-Super) § SuperB-factories.
- o Controlling our penguins with the "data-driven" method using $J/\psi\pi^{o}$ to control the penguin contribution in $J/\psi\kappa^{o}_{s.}$ ciuchini et. al. PRL 95, 221804 (2005).

(Theory & controlling penguins) systematics

límíted

o Expected precision for sin2b $(J/\psi \kappa_s^o)$ - CDR Table 2-1.

Observable	HFAG (~840 fb-1)	B Factories (2 ab^{-1})	$\operatorname{Super} B$ (75 ab^{-1})
$\sin(2\beta) (J/\psi K^0)$	0.026	0.018	0.005 (†)

- o Small Standard Model theoretical uncertainty...
 - o $\Delta S_{J/\psi KS} = S_{J/\psi KS}$ sín2b ~ O(10⁻³). Lí and Míshíma. hep-ph/0610120.
 - ΔS_{J/ψKS} = S_{J/ψKS} sín2B ~O(10⁻⁴). Boos et. al. Phys. Rev. D. 70 036006 (2006)
 Not important for the (non-Super) § SuperB-factories.
- o Controlling our penguins with the "data-driven" method using $J/\psi\pi^{o}$ to control the penguin contribution in $J/\psi\kappa^{o}_{s.}$ cinchini et. al. PRL 95, 221804 (2005).

(Systematics - 1)

Source	Irreducible	Error of $\sin 2\phi_1$	
Wrong tag		0.007	
Physics parameters		0.002	Tables tables from "I attend of Internet for
Vertexing	\checkmark	0.012	Tubles taken from Letter of Intent for
Background fraction		0.006	KEK Super B Factory" (2004).
Background $ \Delta t $ shape		0.001	
Resolution function		0.005	
Resolution parameterization	\checkmark	0.006	
Tag-side interference	\checkmark	0.001	
Possible fit bias		0.008	
Total		0.019	

Table 4.11: Systematic errors for $\sin 2\phi_1$ measured with the $J/\psi K_S$ mode at 140 fb⁻¹.

- KEK Super B LOI from 2004
 shows irreducible systematic
 error contributions from:
 - o vertexing,
 - o Resolution parameterisation,
 - o Tag-side interference.
- Extrapolations to 50 ab⁻¹ show that

 σ (statistical) $\approx \sigma$ (irreducible systematic)

Table 4.13: Expected errors at 140 fb⁻¹, 5 ab⁻¹ and 50 ab⁻¹.Katherine George. 5th Super B Workshop. Paris, May 9th -11th 2007.28

		Statistical	Syste	Systematic	
			reducible	irreducible	
$\sin 2\phi_1$	(140 fb^{-1})	0.080	0.014		0.082
	$(5 \ ab^{-1})$	0.013	0.002	0.013	0.019
	$(50 \ ab^{-1})$	0.004	0.001		0.014
$S_{J/\psi K_S^0}$	(140 fb ⁻¹)	0.080	0.014		0.082
	$(5 \ ab^{-1})$	0.013	0.002	0.014	0.019
	$(50 \ ab^{-1})$	0.004	0.001		0.015
$A_{J/\psi K_S^0}$	(140 fb ⁻¹)	0.056	0.017		0.070
	$(5 \ { m ab}^{-1})$	0.009	0.003	0.038	0.039
	$(50 \ ab^{-1})$	0.003	0.001		0.038

Taken from the talk "b →ccs decays at BaBar" given at 4th CKM Workshop. Nagoya, Dec. 2006. Numbers are from the preliminary BaBar sin2B result described in hep-ex/0607107.

Contributions to the systematic error on sin2b (At 316 fb⁻¹: Total systematic error = \pm 0.019, total statistical error = \pm 0.034) 316 fb-1 Description of background events ■±0.00チ CP content of peaking background Background shape uncertainties ■±0.009 Mistag differences between B_{CP} and BFlav samples ■±0.00≯ Composition and content of $J/\psi \kappa^{\circ}$, background Δt resolution and detector effects ±0.008 Sílícon detector and alignment uncertainty (± 0.0005) Δt resolution model Does not scale with sqrt(N) ±0.008 Beam spot position ±0.003 Fixed Δm , $\Delta \Gamma / \Gamma$ ±0.002 Tag-side interference/DCSD decays •±0.00з MC statistics/bias

Katherine George . 4th International Workshop on the CKM Unitarity Triangle. December 12th - 16th, 2006, Nagoya, Japan. Taken from the talk "b →ccs decays at BaBar" given at 4th CKM Workshop. Nagoya, Dec. 2006. Numbers are from the preliminary BaBar sin2B result described in hep-ex/0607107. Contributions to the systematic error on sin2b (At 316 fo⁻¹: Total systematic error = \pm 0.019, total statistical error = \pm 0.034) $316 \, \mathrm{fb}^{-1} \rightarrow 2 \mathrm{ab}^{-1}$ Description of background events ■±0.00≯ ±0.003 CP content of peaking background Background shape uncertainties Mistag differences between B_{CP} and BFlav samples ■±0.009 ±0.004 ■±0.00チ ±0.003 Composition and content of $J/\psi \kappa^{\circ}$, background Δt resolution and detector effects ±0.008 ± 0.003 Sílícon detector and alignment uncertainty ±0.0005 (± 0.0005) At resolution model Does not scale with sqrt(N) ±0.008 ±0.008 Beam spot position ±0.003 ±0.001 Fixed Δm , $\Delta \Gamma / \Gamma$ ±0.002 ±0.002 Tag-side interference/DCSD decays ±0.001 ±0.003 MC statistics/bias ±0.010 Katherine George. 4th International Workshop on the CKM Unitarity Triangle. December 12th - 16th, 2006, Nagoya, Japan.

b->ccs at higher luminosities (Systematics - 111)

- o ±0.010 @ 2ab⁻¹ of which I estimate ~±0.008 is currently "irreducible" with the current detectors.
 - Future improvements can come from:
 - An "improved" detector,
 - O Use of higher statistics control samples at Super B,
 - o Subsequent improvements in upcoming BaBar/Belle publications.

b->ccs at higher luminosities (Systematics - 111)

- o ± 0.010 @ 2ab⁻¹ of which I estimate ~ ± 0.008 is currently "irreducible" with the current detectors.
 - Future improvements can come from:
 - An "improved" detector,
 - o Use of higher statistics control samples at Super B,
 - o Subsequent improvements in upcoming BaBar/Belle publications.
- CDR may be possible to reduce this error to ± 0.005 (total).

Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})
$\sin(2\beta) \; (J/\psi K^0)$	0.018	0.005 (†)
$\cos(2\beta) \left(J/\psi K^{*0} ight)$	0.30	0.05

Complimentary measurements of B

Complementary measurements of B B°->J/ $\psi\pi^{\circ}$ and B°-> D^{+(*)} D^{-(*)}

- o Same tree and penguín díagrams as b → ccs ('s' replaced by a 'd')
- o Penguín díagram has a dífferent weak phase
- o could have a more significant contribution than
 in b → ccs modes,
- D^{(*)-} > ∴sízeable deviations from b → ccs may suggest New Physics in the b → d penguin topology.
 (*)+
 e.g.^(*) b and gluino masses in the range 100-300 GeV can produce measurable differences in value of sin2B obtained from b → ccs and b → ccd decays.

 $\mathbb{B}^{O} \rightarrow \mathbb{D}^{+(*)} \mathbb{D}^{-(*)}$ (*) Y. Grossman and M. P. Worah, Phys. Lett. B 395, 241 (1997) [arXiv:hep-ph/9612269]. $O \mathbb{D}^{+}\mathbb{D}^{-}$ is a CP-eigenstate,

- o D*+D*- ís a CP-admíxture ∴ angular analysís requíred.
- o $D^{*+}D^{-}$ are not CP-eigenstates, but C=0 and S~-sin 2b in the SM.
- o Penguín contribution expected to be small (~2-10%). Xing, PRD 61, 014010 (2000).

Time-dependent CP Asymmetries in b \rightarrow ccd transitions (B^o \rightarrow J/ $\psi\pi^{o}$)

232 M BB pairs.

152 M BB pairs.

o Current measurements indicate that $S(J/\psi\pi^o)$ and $C(J/\psi\pi^o)$ are consistent with $S = -\sin 2\beta_{b\to ccs}$ and C = 0.

Time-dependent CP Asymmetries in b \rightarrow ccd transitions (B^o \rightarrow D⁺D⁻)

oBelle : Evidence for direct CPV at 3.20.
o Not confirmed by BaBar.
oBelle result is outside of physical region, with the average very close to the boundary.
o HFAG warning - interpret average with care.

Time-dependent CP Asymmetries in b ->ccd transitions (Evidence for CP violation in $B^{\circ} \rightarrow D^{*+}D^{-}$)

 $S(D^{*+}D^{-})$ BABAR

 $S(D^{*+}D^{-})$ Belle

 $S(D^{*+}D)$ Ave.

 $C(D^{*+}D^{-})$ Belle

 $C(D^{*+}D^{-})$ Ave.

 $C(D^*D^+)$ Belle

 $C(D^{*}D^{+})$ Ave.

C(D^{*+}D⁻) BABAR

185 M BB pairs.

383 M BB pairs.

0 Not a CP eigenstate. o Analyse $D^{*+}D^{-}$ and $D^{*-}D^{+}$ modes separately.

$$\frac{A(D^{*+}D^-)}{A(D^{*-}D^+)} = Re^{i\delta}$$

$$S_{\pm} = rac{2R\sin(2eta\pm\delta)}{1+R^2}$$
 $S_{\pm} - S_{-})/2 = rac{2R}{1+R^2}\cos\delta\sin 2eta$

o if no CPV (and no penguín),
$$S_{+} = S_{-}$$
 and $C_{+} = C_{-}$

$$S(D^{*}D^{+}) BABAR$$

$$S(D^{*}D^{+}) Belle$$

$$S(D^{*}D^{+}) Ave.$$

$$S(D^{*}D^{+}) Ave.$$

$$F(D^{*}D^{+}) BABAR$$

$$\begin{array}{c} -0.55 \pm 0.39 \pm 0.12 \\ -0.74 \pm 0.19 \\ \hline 0.18 \pm 0.15 \pm 0.04 \\ -0.37 \pm 0.22 \pm 0.06 \\ \hline 0.01 \pm 0.13 \\ \hline -0.44 \pm 0.22 \pm 0.06 \\ -0.96 \pm 0.43 \pm 0.12 \\ -0.55 \pm 0.20 \\ \hline 0.23 \pm 0.15 \pm 0.04 \\ \hline 0.23 \pm 0.15 \pm 0.06 \\ \hline 0.23 \pm 0.13 \\ \end{array}$$

 $-0.79 \pm 0.21 \pm 0.06$

 ρ cosdsin2 $\beta \neq 0$ at 4σ level.

SuperB

Complementary measurements of $B^{\circ} \rightarrow D^{\circ}h^{\circ}$

With multi-body decays o e.g. $\mathbb{D}^{o} \rightarrow \mathbb{K}^{o} \, \pi^{+} \pi^{-}$ o Time-dependent Dalitz analysis of the D decay allows a direct determination of B. o Measure both cos2B and sin2B. 0 Belle : cos2b > 0 @ 98.3% CL. 0 BaBar: cos2b > 0 @ 87% CL. Without multi-body decays 0 BaBar : hep-ex/0703019 $o Sin2b_{eff} = +0.56 \pm 0.23 \pm 0.05$

$$C = -0.23 \pm 0.16 \pm 0.04$$

Katherine George. 5th Super B Workshop. Paris, May 9th -11th 2007.

D

Tíme-dependent CP Asymmetries in b →ccd transitions (Systematics)

Observable	B Factories (2 ab^{-1})	$\operatorname{Super} B$ (75 ab^{-1})
$\sin(2\beta)~(J/\psi~K^0)$	0.018	0.005 (†)
$\cos(2\beta) \; (J/\psi K^{*0})$	0.30	0.05
$\sin(2\beta) (Dh^0)$	0.10	0.02
$\cos(2\beta) \ (Dh^0)$	0.20	0.04
$S(J/\psi\pi^0)$	0.10	0.02
$S(D^+D^-)$	0.20	0.03

- Selected 'complementary' measurements of B from b →ccd transitions are not limited by systematics, statistics or theoretical errors.
- Complementary measurements of B ~few degrees are achievable.

sinzb_{eff} from penguins

sín2b ín b→s penguín domínated modes

- b→s penguín domínated modes, e.g. B°→φK°_s, B°→η'K°_s, B°→K°K°K° (reconstructed as B°→K°_sK°_sK°_s), B°→π°K°_s, B°→ρ°K°_s, B°→ωK°_s, B°→π°π°K°_s and B°→f°K°_s, are some of the most ínteresting places to look for New Physics effects.
 - o "Of the penguin modes, only $\phi K^o{}_s$ really possible at LHCb". Wilkinson, LHCb upgrade workshop, Jan 2007.
- Modes with the smallest theoretical uncertainties are $B^{o} \rightarrow \phi K^{o}_{s}$, $B^{o} \rightarrow \eta' K^{o}_{s}$, and $B^{o} \rightarrow K^{o} K^{o} K^{o}$.

• How large can
$$\Delta S_f$$
 be in the SM?

$$\Delta \mathcal{S}_f \equiv -\eta_f \mathcal{S}_f - \mathcal{S}_{J/\psi K_S}$$

Tables taken from Chua, hep-ph/0605301. Proceedings of talk given at FPCP'06.

ΔS_f	QCDF	pQCD	SCET
ϕK_S	0.02 ± 0.01	$0.020\substack{+0.005\\-0.008}$	
ωK_S	0.13 ± 0.08		
$ ho^0 K_S$	$-0.08\substack{+0.08\\-0.12}$		
$n'K_{c}$	0.01 ± 0.01		-0.02 ± 0.01
$\eta \mathbf{n}_{S}$	0.01 ± 0.01		-0.01 ± 0.01
nK_{S}	$0.10^{+0.11}$		-0.03 ± 0.17
1113	0.10_0.07		$+0.07\pm0.14$
$\pi^0 K_S$	$0.07\substack{+0.05 \\ -0.04}$	$0.06\substack{+0.02\\-0.03}$	0.08 ± 0.03
f_0K_S	0.02 ± 0.00		
a_0K_S	0.02 ± 0.01		
$\bar{K}^{*0}_{\circ}\pi^{0}$	$0.00\substack{+0.03 \\ -0.05}$		
110 /	$0.02\substack{+0.00\\-0.02}$		

41

Sín2b ín b→s penguín domínated modes Hint of sin2b charmless < sin2b -> ccs

N.B. these plots exclude $\rho \kappa^{o}{}_{s}$ and $\pi^{o}\pi^{o}\kappa^{o}{}_{s}$ which have large statistical errors 0 with current datasets.

Katherine George. 5th Super B Workshop. Paris, May 9th -11th 2007.

0

0.2

0.4

0.6

0.8

1

 0.68 ± 0.03

 0.39 ± 0.18

 0.61 ± 0.07

 0.58 ± 0.20

 0.33 ± 0.21

 0.48 ± 0.24

 0.62 ± 0.23

 0.42 ± 0.17

 0.58 ± 0.13

1.4 1.6

 $0.12 \pm 0.31 \pm 0.10$

 $0.50 \pm 0.21 \pm 0.06$

 $0.58 \pm 0.10 \pm 0.03$

 $0.64 \pm 0.10 \pm 0.04$

 $0.71 \pm 0.24 \pm 0.04$

 $0.30 \pm 0.32 \pm 0.08$

 $0.33 \pm 0.26 \pm 0.04$

 $0.33 \pm 0.35 \pm 0.08$

 $0.62^{+0.25}_{-0.30} \pm 0.02$

 $0.11 \pm 0.46 \pm 0.07$

 $0.18 \pm 0.23 \pm 0.11$

 $0.41 \pm 0.18 \pm 0.07 \pm 0.11$

1.2

 $0.68 \pm 0.15 \pm 0.03 \substack{+0.21\\-0.13}$

43

sin 2b in $b \rightarrow s$ penguin dominated modes

Sín2b ín b→s penguín domínated modes

(Systematics)

Observable	B Factories (2 ab^{-1})	$SuperB$ (75 ab^{-1})	
$\sin(2eta)~(J/\psi~K^0)$	0.018	0.005 (†)	
$\cos(2\beta) (J/\psi K^{*0})$	0.30	0.05	
$\sin(2\beta)~(Dh^0)$	0.10	0.02	
$\cos(2\beta) \ (Dh^0)$	0.20	0.04	
$S(J/\psi\pi^0)$	0.10	0.02	
$S(D^+D^-)$	0.20	0.03	
$S(\phi K^0)$	0.13	0.02 (*)	
$S(\eta' K^0)$	0.05	0.01 (*)	
$S(K^0_{\scriptscriptstyle S}K^0_{\scriptscriptstyle S}K^0_{\scriptscriptstyle S})$	0.15	0.02 (*) Theoretic	ally
$S(K^0_{_S}\pi^0)$	0.15	0.02 (*)	201 210-1
$S(\omega K_{\scriptscriptstyle S}^0)$	0.17	0.03 (*)	10 -
$S(f_0K_{\scriptscriptstyle S}^0)$	0.12	0.02 (*)	

 B^o→η'K^o_s becomes theoretically dominated earlier than other penguin modes. Proposed use of "data-driven" methods to control theoretical errors.

- o Grossman, Lígettí, Nír & Quínn (hep-ph/0303171),
- O Gronau, Rosner & Zupan (hep-ph/0403027 and hep-ph/0608085).

 β in the $\overline{\rho} - \overline{\eta}$ plane

(Plots from A. Bevan)

Summary

- o Sub-1° measurements of B_{ccs}
 - Effort needed in reducing the "irreducible" systematics:
 vertexing, tag-side interference and beam-spot.
 - "Data-dríven" method to control penguíns will prove even more useful at a hígher lumínosíty.
- Experiments in a hadronic environment are not competitive for:
 - the 'complementary' (b →ccd) measurements of B, (not systematics, statistics or theoretically limited at Super B)
 - the 'alternative' (b→s penguin) measurements of B (theoretically limited at Super B).
- Not the raison d'etre for SuperB, but measuring B
 is a necessary part of the program.

sínzbín b→s penguín domínated modes

		$C_f = -A_f$	HFAG Moriond 2007 PRELIMINARY		sin(2)	$\beta^{\text{eff}}) \equiv \sin^2 \theta$	(2	ϕ_1^{eff}) HFAG Moriond 2007 PRELIMINABY
: :	BaBar		0.18 ± 0.20 ± 0.10	b→ccs	World Average			0.68 ± 0.03
×	Belle	- 7 2	-0.07 ± 0.15 ± 0.05		BaBar	<mark>₩ * </mark>	-	$0.12 \pm 0.31 \pm 0.10$
- -	Average	英운	0.01 ± 0.13	X X	Belle			$0.50 \pm 0.21 \pm 0.06$
	BaBar		$-0.16 \pm 0.07 \pm 0.03$	4	Average	∓ °		0.39 ± 0.18
Ϋ́Υ	Belle		0.01 ± 0.07 ± 0.05	Q,	BaBar	-		$0.58 \pm 0.10 \pm 0.03$
F	Average		-0.09 ± 0.06	Ϋ́Ξ	Belle		+	$0.64 \pm 0.10 \pm 0.04$
× "	BaBar	C 8	$0.02 \pm 0.21 \pm 0.05$		Average			0.61 ± 0.07
× °	Belle	,, <mark>∠ .</mark> ₽	-0.31 ± 0.20 ± 0.07	<u> </u>	BaBar	E		$0.71 \pm 0.24 \pm 0.04$
~	Average	는 운	-0.14 ± 0.15	L L	Belle	+ • • •		$0.30 \pm 0.32 \pm 0.08$
	BaBar	<u>c</u>	$0.20 \pm 0.16 \pm 0.03$	×	Average		.	0.58 ± 0.20
<u> </u>	Belle	► <mark>< 2</mark>	0.05 ± 0.14 ± 0.05	Š	BaBar		•	$0.33 \pm 0.26 \pm 0.04$
я	Average		0.12 ± 0.11	- -	Belle			$0.33 \pm 0.35 \pm 0.08$
~	BaBar		0.64 ± 0.41 ± 0.20		Average			0.33 ± 0.21
5	Average	<u> </u>	0.64 ± 0.46	X X	Average	A D		$0.20 \pm 0.52 \pm 0.24$
	BaBar		$-0.43 + 0.25 \pm 0.03$	۱	RoBar		P	0.20 ± 0.57
Ľ	Belle		$0.09 \pm 0.29 \pm 0.06$	Š	Balla			$0.02_{-0.30} \pm 0.02$
8	Average	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	-0.21 ± 0.19	3	Average			$0.11 \pm 0.46 \pm 0.07$
	BaBar	<u> </u>	-0.36 ± 0.23		RaBar		d	0.40 ± 0.24
Ŷ	Belle		0.15 ± 0.15 ± 0.07	Ŷ	Belle			0.02 ± 0.23 0.18 + 0.23 + 0.11
_ ب ا	Average	<u> 문</u> ខ	-0.02 ± 0.13	- -	Average	° <mark>∔</mark> δ		0.42 + 0.17
Ľ.	BaBar		$ 0.23 \pm 0.52 \pm 0.13$		BaBar -		4	-0.72 ± 0.71 ± 0.08
¥ (Average	<u> </u>	0.23 ± 0.54	β	Average	2		-0.72 ± 0.71
Υ K	BaBar Q2E	3	$0.23 \pm 0.12 \pm 0.07$	k.o`	BaBar Q2B		0	$41 \pm 0.18 \pm 0.07 \pm 0.11$
X	Belle		0.09 ± 0.10 ± 0.05	L Ž	Belle			$0.68 \pm 0.15 \pm 0.03 \substack{+0.21 \\ -0.13}$
+ 	Average		0.15 ± 0.09	: ⁺	Average		4	0.58 ± 0.13
.8 -1.6 -1.4	+ -1.2 -1 -0.8	-0.6 -0.4 -0.2 0 0.2 0.4	0.6 0.8 1 1.2 1.4 1.6 1.8	-3	-2 -1	1 0		2

Katherine George. 5th Super B Workshop. Paris, May 9th -11th 2007.

56

Average of $\sin 2b \equiv \sin 2\phi$,

Time-dependent transversity analysis of $B^{o} \rightarrow J/\psi \kappa^{*}$

Belle: 275 M BB pairs.

