

The physics case of running SuperB at the $\Upsilon(5S)$ resonance

Super-B Workshop V ENS, Paris - May 10th, 2007

E.Baracchini, M.Bona, M.Ciuchini, F.Ferroni, M.Pierini, G.Piredda, F.Renga, L.Silvestrini, A.Stocchi

This talk is based on hep-ph/0703258

Outline

- Why the Y(5S) Resonance?
- Experimental Challenges @ Y(5S);
- CP Asymmetries @ Y(5S):
 - BB coherence;
 - Time Integrated CP Asymmetries;
- Accessing the $B_s \overline{B}_s$ Mixing Phase:
 - Time Integrated Measurements to extract the same informations than Time Dependent Analyses;
 - The " Δt sign" method;
- Rare B_s Decays;
- The Impact on Flavour Physics.

Why the $\Upsilon(5S)$ resonance?

The UT in the SM picture

- The B-factories' legacy at present:
 - Good knowledge of the SM free parameters;
 - Consistency of UT and SM picture;
 - No deviations from the SM yet;

```
Most likely, NP effects in B_d mixing
too small to be measured at present
machines (i.e. ~ 1ab^{-1}).
```

- The LHC era:
 - UT precision measurements from LHCb;

Main motivation for new flavour physics experiments only to look for NP effects (HOW? WHERE?)

INFN

5

WHERE: $b \rightarrow d vs. b \rightarrow s$

$\mathbf{b} \rightarrow \mathbf{d}$

- Many precision measurement already available;
- More measurements with a SuperB at the Y(4S);

BUT...

• At present, no evidence for NP.

$\mathbf{b} \rightarrow \mathbf{s}$

- Large NP effects not ruled out by present measurements;
- Can be studied using through Radiative Penguins and CP asymmetries in the B_d sector

BUT...

- Large theoretical uncertainties in the B_d sector w.r.t. the experimental reach
- A new approach constraining the Bs mixing phase:
 - lifetime difference $\Delta\Gamma_{\rm s}\textbf{;}$
 - CP asymmetry in mixing (A_{SL});

Running at the Y(5S) resonance!

Experimental Challenges

INFN

7

Event reconstruction

- Reconstruction techniques inherited from current B-factories:
 - We don't reconstruct the additional particles (π, γ) produced in the $\Upsilon(5S)$ decay chain;
 - separation of different components using kinematic variables.

9

Event reconstruction

SCENARIOS... 3

CP Asymmetries at the $\Upsilon(5S)$ resonance

B pairs coherence

- B pairs at the Y(5S) mainly produced in association with photons;
- What about the coherence of the B pairs?
- It can be shown that:

Time Integrated Analysis

NEW

13

- BB pairs from B*B events have CP = + ;
- Different time dependence w.r.t. BB pairs at a Y(4S)
 B-factory (at a given time both B have the same flavour);
- The integrated asymmetry between $B \rightarrow f$ and $B \rightarrow f$ for a CP eigenstate f is:

$$A_{CP}^{f} = \left(\frac{1-y^{2}}{1+x^{2}}\right)^{2} \frac{(1-x^{2})(1-|\lambda_{CP}^{f}|^{2}) + 4x\mathcal{I}m(\lambda_{CP}^{f})}{(1+y^{2})(1+|\lambda_{CP}^{f}|^{2}) - 4y\mathcal{R}e(\lambda_{CP}^{f})} \qquad \qquad \lambda_{CP}^{f} = \frac{q}{p}\frac{\bar{A}_{f}}{A_{f}} \\ x = \Delta m/\Gamma, \ y = \Delta\Gamma/2\Gamma_{f}$$

- New perspectives for both B_d and B_s , in these channels for which TD analyses are not enough sensitive to determine both $Re(\lambda)$ and $Im(\lambda)$ (e.g. neutral channels).
- EXAMPLE: impact on the α measurement with $B_d \rightarrow \pi^0 \pi^0$

Time Integrated Analysis

NEW

- $B_d \rightarrow \pi^0 \pi^0$:
 - Rate and asimmetry used to determine α through an isospin analysis —> ambiguity;
 - TD analysis at the Y(4S) not enough sensitive to extract both Re(λ) and Im(λ) (or equivalently S and C);
 - Time Integrated Analysis at the Y(5S) allow to constraint $\text{Im}(\lambda)$ and reduce the amiguity.

Accessing the B_s mixing phase

Using the Δt sign

 At distribution for Bs*Bs* events, with one B into a CP eigenstate and the other one into a tagging state:

$$P(\Delta t) \propto e^{\frac{-|\Delta t|}{\tau}} \left[\kappa_1 \cosh\left(\frac{\Delta\Gamma_s \Delta t}{2}\right) + \kappa_2 \cos\left(\Delta m_s \Delta t\right) + \kappa_3 \sinh\left(\frac{\Delta\Gamma_s \Delta t}{2}\right) + \kappa_4 \sin\left(\Delta m_s \Delta t\right) \right]$$

sine and hyp. sine terms give a $\Delta t > 0$ vs. $\Delta t < 0$ asymmetry

Francesco Renga - Super-B V

$$egin{aligned} \kappa_1 &= rac{1}{2}(1+|\lambda^f_{CP}|^2) & \kappa_2 &= -q_{tag}rac{1}{2}(1-|\lambda^f_{CP}|^2) \ \kappa_3 &= -\mathcal{R}e\lambda^f_{CP} & \kappa_4 &= -q_{tag}\mathcal{I}m\lambda^f_{CP}. \end{aligned}$$

NEW

INFN

16

Using the Δt sign

THE SIMULATION

- Full detector simulation (with BaBar performances) to determine signal and background shapes of the discriminating variables ΔE , $m_{\rm ES}$;
- BaBar efficiencies, Δt resolution & tagging;
- Toy MC experiments to extract the sensitivity on Re(λ) and Im(λ).

TEST

• β_s from $B_s \to J/\psi \phi$ (assuming only one polarization and $|\lambda| = 1$):

NEW

Using the Δt sign

$\beta_{\rm s} \; \text{from penguin modes}$

• The same technique can be applied to extract β_s from penguin modes (e.g. $B_s \rightarrow K^0 K^0$, penguin dominated as $B_d \rightarrow \phi K_s^0$);

$$\mathcal{A}(B_s \to K^0 \bar{K}^0) = - V_{us} V_{ub}^* P_s^{\text{GIM}} - V_{ts} V_{tb}^* P_s$$

- The theory error induced by P^{gim} can be estimated (hep-ph/0703137):
 - Evaluate P_d^{GIM} contributions in $B_d \rightarrow K^0 K^0$;
 - Estimate the maximum P_s^{GIM} value from a 100% interval around P_d^{GIM} (to take into account SU(3) breaking);
 - Use this maximum value to estimate the theoretical uncertainty.

NEW

Semileptonic Asymmetry

$$A_{\rm SL} \equiv \frac{\Gamma(\overline{B^0} \to l^+ X) - \Gamma(\overline{B^0} \to l^- X)}{\Gamma(\overline{B^0} \to l^+ X) - \Gamma(\overline{B^0} \to l^- X)} = -\operatorname{Re}\left(\frac{\Gamma_{12}}{M_{12}}\right)^{\rm SM} \frac{\sin(2\phi_{\rm Bd})}{C_{\rm Bd}} + \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)^{\rm SM} \frac{\cos(2\phi_{\rm Bd})}{C_{\rm Bd}} + \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)^{$$

- B_d sector:
 - Current experimental sensitivity cannot bound CKM in the SM;
 - Bounds on NP parameter space;
- $B_d B_s$ admixture:
 - measurements from D0 (dimuons charge asymm.);
 - A_{CH} sensitive to NP effects;
 - Experimental precision at Tevatron is not expected to improve

19

CTUDIVM-VRBIS

Semileptonic Asymmetry

Super-B @ $\Upsilon(5S)$ can access A_{CH} and eventually $A_{SL}^{s,d}$ if Bd/Bs separation is possible

D(*) l v

 Counting Ds(*)⁺l⁻ v and Ds(*)⁻l⁺ v events against a semileptonic or hadronic tag;

DILEPTONS

- Counting dilepton pairs;
- Possibility to access ${\tt A}_{_{\rm CH}}\textbf{;}$

Lifetime Difference $\Delta\Gamma$

LIFETIME DIFFERENCE $\Delta \Gamma_{\rm s} = \Gamma_{\rm l} - \Gamma_{\rm h}$

$$\begin{aligned} \frac{\Delta\Gamma_q}{\Delta m_q} &= -2\frac{\kappa}{C_{B_q}} \left\{ \cos\left(2\phi_{B_q}\right) \left(n_1 + \frac{n_6 B_2 + n_{11}}{B_1}\right) - \frac{\cos\left(\phi_q^{\rm SM} + 2\phi_{B_q}\right)}{R_t^q} \left(n_2 + \frac{n_7 B_2 + n_{12}}{B_1}\right) + \frac{\cos\left(2(\phi_q^{\rm SM} + \phi_{B_q})\right)}{R_t^{q^2}} \right) \right\} \\ &\left(n_3 + \frac{n_8 B_2 + n_{13}}{B_1}\right) + \cos\left(\phi_q^{\rm Pen} + 2\phi_{B_q}\right) C_q^{\rm Pen} \left(n_4 + n_9 \frac{B_2}{B_1}\right) - \cos\left(\phi_q^{\rm SM} + \phi_q^{\rm Pen} + 2\phi_{B_q}\right) \frac{C_q^{\rm Pen}}{R_t^q} \left(n_5 + n_{10} \frac{B_2}{B_1}\right) \right\} \end{aligned}$$

- Sensitive to NP phase;
- Several experimental methods suggested...

Dighe et al. hep-ph/9511363 Grossman hep-ph/9603244 Dighe et al. hep-ph/9804253 Dunietz et al. hep-ph/0012219

21

...to access $\Delta\Gamma_{s}$, $\Delta\Gamma_{s}\cos(\phi)$, $\Delta\Gamma_{s}\cos^{2}(\phi)$, all available @ $\Upsilon(5S)$ (we investigated the theoretically cleanest).

Lifetime Difference $\Delta\Gamma$

• We considered the method that use the Angular Distribution in $B_s \rightarrow J/\psi \phi$ decays (hep-ph/9804253):

+

IN THE STANDARD MODEL....

$$\frac{d\Gamma(B \to f_{\rm CP-odd})}{dt} \propto e^{-\Gamma_L t}$$
$$\frac{d\Gamma(B \to f_{\rm CP-even})}{dt} \propto e^{-\Gamma_H t}$$

angular analysis to disentangle $(J/\psi\phi)_{odd}$ and $(J/\psi\phi)_{even}$

WITH A NP PHASE...

$$\frac{d^{4}\mathcal{P}(\vec{\rho},t)}{d\vec{\rho}dt} = [\dots \sin(\phi_{\rm CKM})]e^{-\Gamma_{L}t} + [\dots \sin(\phi_{\rm CKM})]e^{-\Gamma_{H}t}$$

$$\dots \text{ where } \phi_{\rm CKM} \text{ is the CP violating weak}$$

$$\text{ phase } (\phi_{\rm CKM} = 2\beta_{\rm s} = 2(\beta_{\rm s}^{\rm SM} + \phi_{\rm Bs}))$$

$$\text{ SM + NP}$$

Lifetime Difference $\Delta\Gamma$

RESULTS

Rare B_s decays

- Sensitive to NP;
- Clean determination from UT fit via:

$$\frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d} f_{B_d} \hat{B}_{B_d} |V_{\rm td}|^2}{m_{B_s} f_{B_s} \hat{B}_{B_s} |V_{\rm ts}|^2}$$

• Additional constraint could come from radiative decays:

Francesco Renga - Super-B V

25

 V_{td}/V_{ts}

$$\frac{\mathcal{BR}(B^0_d \to K^{*0} \gamma)}{\mathcal{BR}(B^0_s \to K^{*0} \gamma)} = \frac{|V_{\rm td}|}{|V_{\rm ts}|} \frac{1}{\xi^2}$$

INFN

26

• $B_{_{\rm S}} \rightarrow \mu \mu$ is one of the most promising decay to look for NP effects in a MFV scenario:

$$\mathcal{B}(B_s \to \mu^+ \mu^-) \Big|_{\text{MSSM}} \approx 3 \times 10^{-6} \frac{r^6}{\left(\frac{2}{3} + \frac{1}{3}r\right)^4} \left(\frac{200 \text{ GeV}}{M_A}\right)^4 \left(\frac{\mu A f(x_{\mu L}, x_{RL})}{M_{\tilde{t}_L}^2}\right)^2 \quad (r = \tan\beta/50.)$$

• Deviations of the BR from the SM (~ $3.5*10^{-9}$) are possible in a MFV scenario, but a strong enhancement is already ruled out by $b \rightarrow s\gamma$ and $b \rightarrow sll$ measurements;

- An observation of the BR above the SM value will rule out SM & MFV
- An observation of the BR below the SM prediction will strongly confirm MFV

$\boldsymbol{B_s} \ \rightarrow \ \boldsymbol{\mu}\boldsymbol{\mu}$

- This is the worst case w.r.t. hadronic machines;
- Simulation with SM BR ~ 3.4*10⁻⁹ and NP (BR = 10*SM) ;

INFN

28

$B_s \rightarrow \gamma \gamma$

 $B_s \rightarrow \gamma \gamma$

- Important probe for NP:
 - Branching ratio SM expectation = $(0.5 1.0) * 10^{-6}$;
 - NP can enhance the BR up to two orders of magnitude;
 - Bounds on several models, golden mode in a couple of scenarios.

e.g. R-Parity violating SUSY

 $B_s \rightarrow \gamma \gamma$

Impact on Flavour Physics

UT in the SM

ASSUMING 75ab⁻¹ at the Y(4S) and 30ab⁻¹ at the Y(5S)

INFN

33

UT beyond the SM

ASSUMING 75ab⁻¹ at the Y(4S) and 30ab⁻¹ at the Y(5S)

INFN

34

Conclusions

- The physics case of a SuperB factory running also at the Y(5S) resonance has been investigated (see also <u>hep-ph/0703258</u>);
- Different final states with BB + photons can be produced:
 - Experimental issue: disentangle the different states -> can be easily done with the usual kinematical variables;
 - Time Integrated Asymmetry using B*B events;
- B_s mixing phase can be accessed also without Time Dependent Analyses $\rightarrow \Delta t$ sign analysis, angular $J/\psi\phi$ analysis,...;
- Additional and independent constraints on CKM parameters can be added -> Vtd/Vts,...;
- Rare B_s decays can be investigated;

We showed that an additional Y(5S) run can complete the results of the main Y(4S) run to improve the knowledge on CKM Matrix and look for Physics Beyond the SM.

35

Investigating The Physics Case of Running a B-Factory at the $\Upsilon(5S)$ Resonance

E. Baracchini^(a), M. Bona^(b), M. Ciuchini^(c), F. Ferroni^(a) M. Pierini^(d), G. Piredda^(a), F. Renga^(a), L. Silvestrini^(a), A. Stocchi^(e)

 (a) Dip. di Fisica, Università di Roma "La Sapienza" and INFN, Sez. di Roma, Piazzale A. Moro 2,00185 Roma, Italy
 (b) Laboratoire d'Annecy-le-Vieux de Physique des Particules, LAPP, IN2P3/CNRS, Université de Savoie, France
 (c) Dip. di Fisica, Università di Roma Tre and INFN, Sez. di Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
 (d) Department of Physics, University of Wisconsin, Madison, WI 53706, USA
 (e) Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université de Paris-Sud, BP 34, F-91898 Orsay Cedex, France

hep-ph/0703258

INFN

36

Backup slides

STUDIVM-VRBISS

Time Dependent analyses

γ from Time Dependent analysis

- TD analysis can provide additional determinations of CKM parameters;
- In the B_s sector, at a B-factory, this kind of analysis is usually affected by smaller theoretical uncertainties w.r.t. B_d sector or hadronic machines;
- The most promising case: $B_s \rightarrow K^+ K^- \& B_s \rightarrow K^0 \overline{K^0}$ In the RGI formalism: $\mathcal{A}(B_s \rightarrow K^0 \overline{K^0}) = - V_{us} V_{ub}^* P^{\text{GIM}} - V_{ts} V_{tb}^* P$ $\mathcal{A}(B_s \rightarrow K^+ K^-) = - V_{us} V_{ub}^* (E_1 + A_2 - P^{\text{GIM}}) + V_{ts} V_{tb}^* P$ 6 exp. measurements (BR, S and C for each decay) 7 unknown quant. (γ + 3 compl. P^{GIM}, P, E1+A2) - 1 arbitrary phase

38

What about LHC?

Bs $\rightarrow \mu\mu$ (Super-B: Nsig = 2.5, Nbkg = 3500)

	1 year	$B_s \rightarrow \mu^+ \mu^-$ signal (SM)	b→µ, b→µ background	Inclusive bb background	Other backgrounds
LHCb	2 fb ⁻¹	30	< 100	< 7500	
ATLAS	10 fb ⁻¹	7	< 20		
CMS (1999)	10 fb ⁻¹	7	< 1		

Bs $\rightarrow J/\psi \phi$ for $\Delta \Gamma$ and sin(ϕ)

 Expected sensitivity: (at Δm_s = 20 ps⁻¹)
 ✓ LHCb: 125k Bs→J/ψφ signal events/year
 → σ_{stat}(sin φ_s)~0.031, σ_{stat}(ΔΓ_s/Γ_s)~ 0.011 /(1year, 2fb⁻¹)
 → σ_{stat}(sin φ_s)~0.013 after first 5 years, adding pure CP modes like J/ψη, J/ψη' (small improvement)
 ✓ ATLAS: similar event rate as LHCb but less sensitive → σ_{stat}(sin φ_s)~0.08 (1year, 10fb⁻¹)
 ✓ CMS: > 50k events/year, sensitivity study ongoing

Exploiting Δm_s sensitivity (TD analisys)

39

INFN

What about LHC?

Bs $\rightarrow \phi \gamma$

In 1 year LHCb expects triggered and reconstructed:
35k events $B^0 \rightarrow K^{0*}(K^+\pi^-) \gamma$; S/B>1.4
9.4k events $B_e \rightarrow \phi (K^+K^+) \gamma$; S/B>0.4

ATLAS expected signal events/year:				
$B_d \rightarrow K^{*0} \gamma$:	~ 3.3 k ev. ; S/ $\sqrt{BG} > 5$			
$B_s \rightarrow \phi \gamma$:	~1.1k ev. ;S/\sqrt{BG} > 7			

We studied Bs $\rightarrow \phi \gamma$ and found: 7.9k events and S/B = 1.9; S/sqrt(B) > 100

Event reconstruction

 $\text{BB}\pi$ vs. BB SEPARATION

CAVEAT: the BB π background can be important in final states with an odd number of s quarks (K* γ , K π , etc.):

- B_s decays CKM suppressed w.r.t. B_d decays;
- B_s decays (sometimes) suppressed by dynamic (penguins or annihilation vs tree).

INFN

41

NOTE: Only UL for the BB π BR – We use the UL (worst case).

BB coherence at the $\Upsilon(5S)$

42

• Main Question: Which Δt resolution do we need to be sensitive to TD-related quantities (S and C)?

requested ∆t resolution ~ 0.1 ps

INFN

43

... realistic improvements on the detector performances can turn into important improvements in the rasult.

Just an example: improving vertexing performances in such a way that B and D vertex can be separated on the tag side

INFA

It is not unrealistic to assume that in this way bkg can be reduced by a factor 5