

Flavour Physics With Other Facilities

A. Pich IFIC , Valencia

5th Super B Workshop – Paris , 9-11 May 2007

Flavour Structure of the Standard Model

$$\begin{pmatrix} u & v_e \\ d & e^- \end{pmatrix}, \begin{pmatrix} c & v_\mu \\ s & \mu^- \end{pmatrix}, \begin{pmatrix} t & v_\tau \\ b & \tau^- \end{pmatrix}$$
 Why 3?

- Pattern of masses
- Flavour Mixing

• C/-

Related to SSB Scalar Sector (Higgs)

- $\tau cF: c, \tau, \nu_{\tau}$
- BF, SuperB : b, c, τ

LC: t,...
νF: ν_e, ν_μ, ν_τ

Flavour Physics

 δ_{QED} known to 0.3 ppm (van-Ritbergen & Stuart)

(5 ppm)

New World Average:

 τ_{μ} = 2.197 019 (21) μ s

Flavour Physics

A. Pich – Super B 2007

 $G_{\rm F}$ = 1.166 371 (6) x 10⁻⁵ GeV⁻²

$$\begin{split} \Gamma(\tau \to v_{\tau} \ l \ \overline{v}_{l}) &= \frac{G_{F}^{2} \ m_{\tau}^{5}}{192 \ \pi^{3}} \ f(m_{l}^{2}/m_{\tau}^{2}) \ r_{\rm EW} \\ f(x) &= 1 - 8x + 8x^{3} - x^{4} - 12x^{2} \log x \\ r_{\rm EW} &= 0.9960 \end{split}$$
 (Marciano-Sirlin)

$$B_e = \frac{B_{\mu}}{0.972564 \pm 0.000010} = \frac{\tau_{\tau}}{(1632.1 \pm 1.4) \times 10^{-15} \text{s}}$$

$$(B_{\mu}/B_{e})_{\rm exp} = 0.9725 \pm 0.0039$$

Flavour Physics

τ_{τ} , Br($\tau \rightarrow \mu$), Br($\tau \rightarrow e$) ~ 0.3% precision

Future Improvements: BABAR , BELLE , KEDR , BESIII , SuperB , ... $\delta m_{\tau} \sim 0.023 \text{ MeV} (12.7 \text{ ppm})$ BESIII

$$m_{\tau} = 1776.99 \substack{+0.29 \\ -0.26} \text{ MeV}$$
(PDG06)
1776.71 ± 0.13 ± 0.32 MeV (BELLE)
1776.80 ± $\substack{0.25 \\ 0.22}$ ± 0.15 MeV (KEDR)

Flavour Physics

LEPTON UNIVERSALITY

 1.036 ± 0.014

$B_{\tau \to e} \tau_{\mu} / \tau_{\tau}$	1.0004 ± 0.0022
$\Gamma_{\tau \to \pi} / \Gamma_{\pi \to \mu}$	0.996 ± 0.005
$\Gamma_{\tau \to K} / \Gamma_{K \to \mu}$	0.979 ± 0.017
$B_{W\to\tau}/B_{W\to\mu}$	1.039 ± 0.013
	$ g_{\tau}/g_{e} $
$B_{\tau \to \mu} \tau_{\mu} / \tau_{\tau}$	1.0004 ± 0.0023

 $B_{\tau \to \mu} / B_{\tau \to e}$ $B_{\pi \to \mu} / B_{\pi \to e}$ $B_{K \to \mu} / B_{K \to e}$ $B_{K \to \pi \mu} / B_{K \to \pi e}$ $B_{W \to \mu} / B_{W \to e}$

 1.0000 ± 0.0020 1.0017 ± 0.0015 1.012 ± 0.009 1.0002 ± 0.0026 0.997 ± 0.010

Flavour Physics

 $B_{\tau \to \mu} \tau_{\mu} \tau_{\tau}$

 $B_{W\to\tau}/B_{W\to e}$

Assuming Universality:

$$\frac{V_{us}}{V_{ud}} \left(\frac{f_K}{f_{\pi}}\right) = \left(\frac{m_{\tau}^2 - m_{\pi}^2}{m_{\tau}^2 - m_{K}^2}\right) \sqrt{\frac{\Gamma(\tau^- \to \nu_{\tau} K^-)}{\Gamma(\tau^- \to \nu_{\tau} \pi^-)}} \frac{1 + \delta R_{\tau/\pi}}{1 + \delta R_{\tau/K}} = 0.267 \pm 0.005$$

$$\frac{\pi, K}{\nabla_{\mu}} \xrightarrow{g_{\mu}} \mu}{\nabla_{\mu}}$$

$$\frac{V_{us}}{V_{ud}} \left| \left(\frac{f_K}{f_\pi} \right) = \left(\frac{m_\pi^2 - m_\mu^2}{m_K^2 - m_\mu^2} \right) \sqrt{\frac{m_K^3}{m_\pi^3}} \frac{\Gamma(K^- \to \overline{\nu}_\mu \,\mu^-)}{\Gamma(\pi^- \to \overline{\nu}_\mu \,\mu^-)} \frac{1 + \delta R_\pi}{1 + \delta R_K} = 0.27618 \pm 0.00048$$

Flavour Physics

V_{ij} Determination ($0^- \rightarrow 0^-$) $K \rightarrow \pi I \nu$, $D \rightarrow K I \nu$...

$$\langle P'(k')|\bar{u}_i\gamma^{\mu}d_j|P(k)\rangle = C_{PP'}\left\{(k+k')^{\mu}f_+(q^2) + (k-k')^{\mu}f_-(q^2)\right\}$$

$$\begin{split} \Gamma(P \to P' l \nu) &\approx \frac{G_F^2 M_P^5}{192 \pi^3} |\mathbf{V}_{ij}|^2 C_{PP'}^2 |f_+(0)|^2 \mathcal{I} (1 + \delta_{\mathsf{RC}}) \\ \mathcal{I} &\approx \int_0^{(M_P - M_{P'})^2} \frac{dq^2}{M_P^8} \lambda^{3/2} (q^2, M_P^2, M_{P'}^2) \left| \frac{f_+(q^2)}{f_+(0)} \right|^2 \end{split}$$

suppressed

 $\left(\, m_{u_i} - m_{d_i} \ , \ m_l \,
ight)$

• Measure the q^2 distribution $\longrightarrow \mathcal{I}$

- Measure $\Gamma \longrightarrow |f_+(0)| |V_{ij}|$
- Get a theoretical prediction for $f_+(0) \longrightarrow |V_{ij}|$

Theory is always needed:

Flavour Physics

A. Pich – Super B 2007

Symmetries

 $f_{+}(0) = 1 + O[(m_d - m_u)^2]$

Superallowed Nuclear β Transitions (0⁺ \rightarrow 0⁺)

 $|V_{ud}| = 0.97377 \pm 0.00027$

(Marciano – Sirlin)

Flavour Physics

Neutron Decay:

(Czarnecki – Marciano – Sirlin)

PDG06: $\tau_n = (885.7 \pm 0.8)$ s , $g_A = 1.2695 \pm 0.0029$

Flavour Physics

• Superallowed Nuclear β Transitions :

$$|V_{ud}| = 0.97377 \pm 0.00027$$

• Neutron Decay: $|V_{ud}| = 0.9745 \pm 0.0019$

• Pion Decay: $Br(\pi^+ \to \pi^0 e^+ \nu_e) = (1.036 \pm 0.006) \times 10^{-8}$ (PIBETA)

$$|\mathbf{V}_{ud}| = 0.9728 \pm 0.0030$$

Flavour Physics

K_{I3} Decays

E865, ISTRA+, KLOE, KTEV, NA48

M. Moulson 07 FLAVIAnet Kaon WG

Form Factor Slopes

Flavour Physics

			Approx contrib to $\%$ err			
Mode	$ V_{us} f_{\pm}(0)$	$\% \ \mathrm{err}$	\mathbf{BR}	au	Δ	Ι
$K_L \ e3$	0.21639(55)	0.25	0.09	0.19	0.10	0.09
$K_L \ \mu 3$	0.21649(68)	0.31	0.10	0.18	0.15	0.17
$K_S \ e3$	0.21555(142)	0.66	0.65	0.03	0.10	0.09
$K^{\pm} e3$	0.21844(101)	0.46	0.38	0.11	0.24	0.09
$K^{\pm} \mu 3$	0.21809(125)	0.57	0.31	0.10	0.45	0.17

$|\mathbf{f}_{+}(0) \mathbf{V}_{\rm us}| = 0.21673 \ (46)$

	J. Portolés	
	Reference	$f_{+}^{K^{0}\pi^{-}}(0)$
Quark model	[Leutwyler & Roos, 1984]	0.961 (8)
Lattice	[Becirevic et al, 2005]	0.960 (9)
	[MILC Collab., 2005]	0.962 (11)
	[Dawson et al, 2006]	0.968 (11)
	[UKQCD/RBC Collab., 2006]	0.961 (5)!
	[Bijnens & Talavera, 2003]	0.976 (10)
K π scalar f.f. $\Big\{$	[Jamin, Oller & Pich, 2004]	0.974 (11)
Large-N _c	[Cirigliano et al, 2005]	0.984 (12)

O(p⁴)

Large O(p⁶) ChPT correction (Bijnens-Talavera)

O(p⁶)

 $f_{+}(0) = 0.97 (1)$

 $|V_{\rm us}| = 0.2234 \ (24)$

Flavour Physics

(Marciano 04)

$\Gamma(\mathbf{K}^+ \rightarrow \mu^+ \nu_{\mu}) / \Gamma(\pi^+ \rightarrow \mu^+ \nu_{\mu})$

$$\frac{f_{K} |\mathbf{V}_{us}|}{f_{\pi} |\mathbf{V}_{ud}|} = 0.27618 \pm 0.00048$$

(Jamin-Oller-Pich 06)
$$\frac{f_{K}}{f_{\pi}} = 1.208 \pm 0.002 \stackrel{+0.007}{_{-0.014}}$$

(MILC 06)
$$|\mathbf{V}_{us}| = 0.2226 \stackrel{+0.0026}{_{-0.0014}}$$

 $|V_{ud}| = 0.97378 \pm 0.00027$ (PDG 06)

Flavour Physics

 $\frac{f_K}{f_\pi} =$

$\mathsf{R}_{\tau,\mathsf{S}} = \Gamma(\tau^- \to \nu_{\tau} \, \mathsf{S}^-) \, / \, \Gamma(\tau^- \to \nu_{\tau} \, \mathsf{e}^- \, \overline{\nu}_{\mathsf{e}})$

$$\delta R_{\tau}^{kl} = \frac{R_{\tau,ud}^{kl}}{|V_{ud}|^2} - \frac{R_{\tau,S}^{kl}}{|V_{us}|^2} \approx 24 \frac{m_s^2(m_{\tau}^2)}{m_{\tau}^2} \Delta_{kl}(\alpha_s)$$

 $|V_{us}|^{2} = \frac{R_{\tau,S}^{(0,0)}}{\frac{R_{\tau,V+A}^{(0,0)}}{|V_{ud}|^{2}} - \delta R_{\tau,\text{th}}^{(0,0)}}$ $m_{s}(2 \text{ GeV}) = 94 \pm 6 \text{ MeV}$

Gámiz-Jamin-Pich-Prades-Schwab

Simultaneous $m_s \& V_{us}$ fit possible with better data The τ could give the most precise V_{us} determination

Flavour Physics

V_{us} Summary

- K_{I3} : $|V_{us}| = 0.2234 \pm 0.0024$
- $K_{\mu 2} / \pi_{\mu 2}$: $|V_{us}| = 0.2226 + 0.0026 0.0014$
- τ Decay: $|V_{us}| = 0.2220 \pm 0.0033$
- \bullet Hyperon Decay: $|V_{us}| = 0.226 \pm 0.005$

$|V_{us}| = 0.2230 \pm 0.0015$

$$|\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 + |\mathbf{V}_{ub}|^2 = 0.9980 \pm 0.0015$$

Flavour Physics

KLOE

 $Br[K_S \to e^+e^-(\gamma)] < 2.1 \cdot 10^{-8}$ (90% C.L.) CPLEAR: < 1.4 · 10⁻⁷

Proposals to upgrade DAΦNE in Luminosity (and Energy)

Flavour Physics

Flavour Physics

$$Br(K^{+} \to \pi^{+} \nu \,\overline{\nu}) = (8.4 \pm 1.0) \times 10^{-11} \sim A^{4} \left[\eta^{2} + (1.4 - \rho)^{2} \right]$$
$$Br(K_{L} \to \pi^{0} \nu \,\overline{\nu}) = (2.7 \pm 0.4) \times 10^{-11} \sim A^{4} \eta^{2}$$

Buras et al

Long-distance contributions are negligible $\mathbf{T}(K_L \to \pi^0 \nu \, \overline{\nu}) \neq 0 \longrightarrow$

BNL: few events! Br $(K^+ \to \pi^+ \nu \,\overline{\nu}) = (1.47 \,^{+1.30}_{-0.89}) \cdot 10^{-10}$ KEK-E391a: Br $(K_L \to \pi^0 \nu \,\overline{\nu}) < 2.1 \times 10^{-7}$ (90% C.L.)

New Experiments Needed

Flavour Physics

Future Kaon Initiatives

Flavour Physics

Plans for $K^+ \to \pi^+ \overline{\nu} \nu$

- J-PARC: Lol; plans to use the BNL-E949 detector
- CERN: P-326 ; about 80 SM events in two years

Plans for $K_L \rightarrow \pi^0 \overline{\nu} \nu$

- KEK: E391a ; data taking completed (three runs)
 - Present limit < 2.1 10⁻⁷ 90% CL (10% of Run-1 data)
 - Aims to reach the Grossman-Nir bound (~ 10^{-9})
- J-PARC: proposal (>2010)
 - Step I: E391a detector at J-PARC ~ SM sensitivity
 - Step II: New detector & dedicated beam-line ~ 100 SM events
- CERN: would need an upgraded proton complex

Flavour Physics

Pure DD, no additional particles (E_D = E_{beam}).
 σ (DD) = 6.4 nb (Y(4S)->BB ~ 1 nb)
 Low multiplicity ~ 5-6 charged particles/event

→ high tagging efficiency: ~22% of D's Compared to ~0.1% of B's at the Y(4S)

A little luminosity goes a long way: # events in 100 pb⁻¹ @ charm factory with 2D's reconstructed ~ # events in 500 fb⁻¹ @ Y(4S) with 2B's reconstructed

Charm 2006 June 5-7 2006 Beijing Charm Perspective lan Shipsey

 $\psi(3770) \rightarrow D^+ D^ D^+ \rightarrow K^- \pi^+ \pi^+, \ D^- \rightarrow K^+ \pi^- \pi^-$

Absolute Hadronic Br's CLEO-c

A. Pich – Super B 2007

Flavour Physics

f_D and f_{Ds} : comparison with theory

• Summary of CLEO-c results:

 $f_D = (223 \pm 17 \pm 3) \text{ MeV}$

arXiv:0704.0629

 $f_{D_s} = (274 \pm 13 \pm 7) \text{ MeV}$ $f_{D_s}/f_{D^+} = 1.23 \pm 0.11 \pm 0.04$

- Consistent with most models
- Statistically limited more data is on the way!
- Lattice QCD (unquenched) PRL 95, 122002 (2005):

 $f_D = (201 \pm 3 \pm 17) \text{ MeV}$

 f_{Ds} = (249 ± 3 ± 16) MeV

 $f_{Ds}/f_D = 1.24 \pm 0.01 \pm 0.07$

Ρ

systematics limited!

	0.2	8	1779307 0188
CLEO D _s $\rightarrow \mu\nu, \tau\nu (\tau \rightarrow \pi\nu)$ Final March07, 314/pb	HH		
CLEO D _s →tv (t→evv) prelim ICHEP 2006, 195/pb	H-O-H	Artuso,	
CLEO average	101		H
	273 + 10 + 5	223 + 17 + 3	1.22 + 0.09 + 0.03
Unquenched LQCD Aubin, PRL 95, 122002 (2005)	HOH	HeH	⊢ ⊷ −
Quenched L. (QCDSF) Ali Khan, hep-lat/0701015	HeH	H	101
Quenched L. (Taiwan) Chiu, PLB 624, 31 (2005)	Het	нен	HOH
Quenched L. (UKQCD) Lellouch, PRD 64, 094501 (2001)	HeH	HeH	HOH
Quenched Lattice Becirevic, PRD 60, 074501 (1999)	Hel	Hei	
QCD Sum Rules Bordes, hep-ph/0507241	H	+++	Hei
QCD Sum Rules Narison, hep-ph/0202200	HHH	HeH	Hei
Quark Model Ebert, PLB 635, 93 (2006)	•	•	•
Quark Model Cvetic, PLB 596, 84 (2004)		H+H	•
Light Front QM Linear Choi, hep-ph/0701263	•	•	•
Light Front QM HO Choi, hep-ph/0701263	•	•	•
Potential Model Wang, Nucl. Phys. A744, 156 (2004)	•	•	•
Light Front QCD Salcedo, Braz. J. Phys. 34, 297 (2004)	•	•	•
Isospin Splittings Amundsen, PRD 47, 3059 (1993)			
	200 250 300	200 300	1 1.2 1.4
RELIMINARY	f _{Ds} (MeV)	f _D (MeV)	f _{Ds} / f _D

SEMILEPTONIC DECAYS

$f(q^2)/f(0)$

Important Tests of Non-Perturbative QCD Tools Relevant to Improve Predictions for B's

Flavour Physics

RARE DECAYS

D. Asner

Experimental Sensitivity

Exp't	D°→π°ℓ+ℓ GIM	D⁺→π⁺ℓ⁺ℓ GIM	D⁺→π⁻µe LFV	D⁺→π⁻ℓ⁺ℓ LNV
Standard Model	10-6	10-6	~0	Forbidden
CLEO-c	1e-5	4e-6	-	2.2e-6
BESIII	5e-8	3e-8	3e-8	3e-8
SuperB (4 GeV)	2e-8	1e-8	1e-8	1e-8
B-factories		4e-6	4e-6	4e-6
SuperB (10 GeV)	~	7e-7	7e-7	7e-7
CDF/D0	•		•	
LHCb	-		2	
LHCb (upgrade)	-		•	

I. Shipsey

GIM, FCNC, virtual loops, ...

Sensitive to New Physics

$$\left| \frac{\mathbf{V}_{ub} \mathbf{V}_{cb}^{*}}{\mathbf{V}_{us} \mathbf{V}_{cs}^{*}} \right|^{2} \left(\frac{m_{b}^{2} - m_{s,d}^{2}}{m_{s}^{2} - m_{d}^{2}} \right) \ll$$

- Intermediate down-type quarks
- b contribution negligible (~1%)
- $\Delta M \sim [SU(3) Breaking]^2$

very suppressed in the SM

: unambiguous signal of New Physics

H. Nelson, A.A. Petrov

Flavour Physics

HFAG VERY Preliminary

$D^0 = \overline{D}^0$ MIXING

D. Asner

Great Expectations

		1	1	
Εxp't / 1 σ	γ _{CP} (10 ⁻³)	y' (10-3)	x'² (10-4)	cos δ
B-factories (2ab ⁻¹)	2-3	2-3	1-2	-
SuperB (50 ab ⁻¹)	0.5	0.7	0.3	-
LHCb (10 fb ⁻¹) Only B->D*	?	0.7	0.7	-
LHCb (100 fb ⁻¹) Prompt D*	?	?	?	-
CLEO-c (750 pb ⁻¹)	10	-	2-3	0.1-0.2
BESIII (20 fb ⁻¹)	4	-	0.5-1	0.05
SuperB - 4 GeV (0.2 ab ⁻¹)	1-2	-	<0.2	<0.05

• 5 σ signal in both y_{CP} & $D^0 \rightarrow K\pi$ possible with 2ab⁻¹ @Y(4S)

- LHCb can confirm signal in $D^0 \rightarrow K\pi y_{cp}$ study in progress
- 5σ time independent signal in y not likely @ BESIII
 - Requires ~1 month run at SuperB (4 GeV)

March 26-28, 2007

Charm Report:Flavour in LHC Era

Flavour Physics

SEARCHES FOR CP IN D DECAYS

Direct C

 $\mathcal{A}_{\mathrm{CP}} \equiv (\Gamma - \bar{\Gamma})/(\Gamma + \bar{\Gamma})$

Strong phase-shifts needed Non-perturbative uncertainties

SM Expectations:

Larger Signals

New Physics

Flavour Physics

Threshold Advantages (Systematics & Backgrounds)

Event statistics

Physics Channel	Energy (GeV)	Luminosity (10 ³³ cm ⁻² s ⁻¹)	Events/year
J/ψ	3.097	0.6	1.0×10 ¹⁰
τ	3.67	1.0	1.2×10 ⁷
ψ'	3.686	1.0	3.0 ×10 ⁹
D *	3.77	1.0	2.5×10 ⁷
Ds	4.03	0.6	1.0×10 ⁶
Ds	4.14	0.6	2.0×10 ⁶

Flavour Physics

 $\mathbf{m}_{\mathbf{v}} \neq \mathbf{0}$

NEW PHYSICS

Neutrino Oscillations

Baryogenesis

Weinberg:
$$-\frac{c_{ij}}{\Lambda} \overline{L}_i \,\tilde{\phi} \,\tilde{\phi}^t L_j^c + \text{h.c.} \xrightarrow{\text{ssn}} -\frac{1}{2} \overline{v}_{iL} M_{ij} \,v_{jL}^c + \text{h.c.} ; \qquad M_{ij} = \frac{c_{ij}}{\Lambda} v^2$$

 $m_v > 0.05 \text{ eV} \longrightarrow \Lambda / c_{ij} < 10^{15} \text{ GeV}$

Lepton Number Violation. Lepton Mixing. Leptonic ớ

Leptogenesis 🔶 🧰

Flavour Physics

LEPTON FLAVOUR VIOLATION

90 % CL Upper Limits on $Br(I^- \rightarrow X^-)$ [BABAR / BELLE]

Decay	U.L.	Decay	U.L.	Decay	U.L.
$\mu^- \rightarrow e^- \gamma$	$1.2\cdot10^{-11}$	$\mu^- \rightarrow e^- e^+ e^-$	$1.0 \cdot 10^{-12}$	$\mu^- \rightarrow e^- \gamma \gamma$	$7.2\cdot10^{-11}$
$\tau^- \rightarrow e^- \gamma$	$1.2 \cdot 10^{-8}$	$\tau^- \rightarrow e^- e^+ e^-$	$2.0\cdot10^{-7}$	$\tau^- \rightarrow e^- e^+ \mu^-$	$1.9 \cdot 10^{-7}$
$\tau^- \rightarrow \mu^- \gamma$	$4.5 \cdot 10^{-8}$	$\tau^- \rightarrow e^- \mu^+ \mu^-$	$2.0\cdot 10^{-7}$	$\tau^- \rightarrow \mu^- e^+ \mu^-$	$1.3 \cdot 10^{-7}$
$\tau^- \rightarrow e^- e^- \mu^+$	$1.1 \cdot 10^{-7}$	$\tau^-\!\!\to\mu^-\!\mu^+\mu^-$	$1.9 \cdot 10^{-7}$	$\tau^- \rightarrow e^- \pi^0$	$1.3 \cdot 10^{-7}$
$\tau^- \rightarrow \mu^- \pi^0$	$1.1 \cdot 10^{-7}$	$\tau^- \rightarrow e^- \eta'$	$2.4\cdot10^{-7}$	$\tau^{-} \rightarrow \mu^{-} \eta'$	$1.4 \cdot 10^{-7}$
$\tau^- \rightarrow e^- \eta$	$1.6 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^- \eta$	$1.5 \cdot 10^{-7}$	$\tau^- \rightarrow e^- K^*$	$3.0 \cdot 10^{-7}$
$\tau^- \rightarrow e^- K_S$	$5.6 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- K_S$	$4.9 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- \rho^0$	$2.0 \cdot 10^{-7}$
$\tau^- \rightarrow e^- K^+ K^-$	$1.4 \cdot 10^{-7}$	$\tau^- \rightarrow e^- K^+ \pi^-$	$1.6 \cdot 10^{-7}$	$\tau^- \rightarrow e^- \pi^+ K^-$	$3.2 \cdot 10^{-7}$
$\tau^- \rightarrow \mu^- K^+ K^-$	$2.5 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^- K^+ \pi^-$	$3.2 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^- \pi^+ K^-$	$2.6 \cdot 10^{-7}$
$\tau^- \rightarrow e^- \pi^+ \pi^-$	$1.2 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^- \pi^+ \pi^-$	$2.9 \cdot 10^{-7}$	$\tau^- \rightarrow \Lambda \pi^-$	$0.7\cdot 10^{-7}$
$\tau^- \rightarrow e^+ K^- K^-$	$1.5 \cdot 10^{-7}$	$\tau^- \rightarrow e^+ K^- \pi^-$	$1.8 \cdot 10^{-7}$	$\tau^- \rightarrow e^+ \pi^- \pi^-$	$2.0 \cdot 10^{-7}$
$\tau^- \rightarrow \mu^+ K^- K^-$	$4.4 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^+ K^- \pi^-$	$2.2 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^+ \pi^- \pi^-$	$0.7 \cdot 10^{-7}$

Flavour Physics

G. Isidori

Minimal Lepton Flavour Violation

• $\mu \rightarrow e\gamma$ should be seen at MEG in most realistic scenarios

• $\tau \rightarrow \mu \gamma$ very useful to discriminate different flavor-mixing models

 $B(\tau \rightarrow \mu \gamma): B(\tau \rightarrow e \gamma): B(\mu \rightarrow e \gamma) \sim [\lambda^{-4} \lambda^{-2}]: 1: 1 \sim [500-10]: 1: 1$

 $B(\tau \rightarrow \mu \gamma):B(\tau \rightarrow e \gamma):B(\mu \rightarrow e \gamma) \sim \lambda^{-6}:\lambda^{-4}:1 \sim 10^4:500:1 \qquad M_R \gg 10^{12} \text{ GeV}$ $M_R \ll 10^{12} \text{ GeV}$

Flavour Physics

in τ Decays

Blind Search for New Physics

Huge statistics

Non-b shopping list :

- Lepton Flavour Violation studies
- In the charm sector
- □ FCNC & Rare D decays
- \Box Universality & Lorentz structure of weak decays (τ)
- First hints on leptonic CP

Flavour Physics

Backup Slides

Flavour Physics

D. Asner

Charm Physics Circa 2013

- Hadronic Branching Ratios
 - D⁰ & D⁺ branching ratios syst. limited at (1-2)% CLEO-c
 - D_s^+ BR stat. limited at 6% CLEO-c
 - CLEO-c will improve to ~4%
 - BESIII will improve to (1-2)%
- Decay constants: statistics limited
 - f_{D+} 7.5% (281pb⁻¹) at 3770. CLEO-c
 - CLEO-c will improve to (4-5)%
 - BESIII will improve to (1-2)%
 - f_{Ds} 4.1% (200pb⁻¹) at 4170. CLEO-c
 - CLEO-c will improve to (2-3)%
 - BESIII can improve
 - $\sigma(f_D/f_{Ds}) \sim 2\%$ at BESIII (20 fb⁻¹)
- Semileptonic Decays
 - BR of Cabibbo suppressed $D^0{\rightarrow}\pi e\nu$ known to 4% CLEO-c
 - CLEO-c will improve to (2-3)%
 - BESIII can improve
 - Vcs ~ 2%, Vcd ~ 4% CLEO-c
 - CLEO-c will improve Vcd~2%
 - Precision form-factors to improve V_{ub} benefits from more 4 GeV data

March 26-28, 2007

CP tagged Dalitz plot analyses e.g.
 D°→CP vs. D°→K_{s L}π⁺π⁻

- Important for γ
- Statistics limited
- CLEO-c can limit sys err on γ < 3°
- Rare Decays
 - CLEO-c sensitivity 10⁻⁵-10⁻⁶
 - BESIII sensititity 10-6-10-7
 - Standard Model rates ~10-8
 - LHCb sensitivity?
 - SuperB @ ~4 GeV ~SM sensitivity
- Charm Mixing
 - Exploiting quantum coherent initial state CLEO-c will measure cosô~±0.1
 - BESIII sensitivity to y ~few \times 10⁻³
 - Need LHCb (Upgrade) or SuperB to cover full range of SM expectations
- CP Violation
 - BESIII sensitive to ~SM asymmetry in D⁺→K_{S,L}π+ ~few×10⁻³.
 - Need LHCb (Upgrade) or SuperB to reach SM expectation in SCS decay.

Charm Report: Flavour in LHC Era

KTeV

Preliminary measurements of:

H. Nguyen (Moriond 07)

• BR($\pi^0 \rightarrow ee\gamma$)/BR($\pi^0 \rightarrow \gamma\gamma$)

 $(1.1539 ~\pm~ 0.0045 ~\pm~ 0.0152) ~\%$

• BR($K_L \rightarrow \pi^0 \gamma \gamma$) and BR($K_L \rightarrow \pi^0 e e \gamma$)

BR(K_L → $\pi^{0}\gamma\gamma$) = (1.30 ± 0.03(stat) ± 0.04(sys)) · 10⁻⁶ BR(K_L → $\pi^{0}ee\gamma$) = (1.90 ± 0.16 ± 0.12) · 10⁻⁸

• LFV limits on $K_L \rightarrow \pi^0 \pi^0 \mu e$ and $\pi^0 \rightarrow \mu e$

BR($K_L \rightarrow \pi^0 \pi^0 \mu e$) < 1.58 x 10⁻¹⁰ (90% CL) **BR**($\pi^0 \rightarrow \mu e$) < 3.63 x 10⁻¹⁰ (90% CL)