Paris 5/'07

"This Year a New Era Has Commenced & You Can Say You Have Been Present" -- Goethe, the Cannonade of Valmy and Charm Dynamics

Ikaros Bigi (Notre Dame du Lac)

Cannonade of Valmy: 1792 battle in Northern France that saved `New' France from having the Standard Model (of that era) of governance imposed by the `Old' powers. Tactically a draw, strategically a French victory

Goethe's statement to the Prussian soldiers at camp fire: 'From this place and from this day forth commences a new era in the world's history, and you can all say that you were present at its birth.'

But written up much later; i.e. Goethe -- not unheard of for a theorist -- bragged about a *post*-diction.

in 2007: Strong evidence has surfaced for D oscillations, which could become conclusive by the summer/fall.
A tactical draw in the struggle for gaps in the SM -- x_D & y_D while possibly generated by SM alone, could contain large contributions from NP -- yet a strategic victory in sight:
CP studies in the future will decide the issue possibly leading to the dawning of a New Era!

Another & much closer historical analogy: We had been talking about CP in B decays for years without much resonance - till B oscill. were observed! (Albeit numerical size much smaller in D decays)

→ $\Delta C \neq 0$ reclaiming strong Silver Medal f. Super-B

The Menu

Prologue: New Physics Scenarios & Uniqueness of Charm

I Inconclusiveness in Interpretation of D⁰ Oscillations

II *CP* with & without D⁰ Oscillations

III Conclusions & Outlook

Prologue: New Physics Scenarios & Uniqueness of Charm

- New Physics scenarios in general induce FIChNC
- their couplings could be substantially stronger for Up-type than for Down-type quarks (unlike in the SM)

(actually happens in some models which `brush the dirt of FIChNC in the down-type sector under rug of the up-type sector)

* `think outside the (SM) box': probe FIChNC dynamics of up-type quarks as `hypothesis-generating' research u C t

only up-type quark allowing full range of probes for New Phys.

basic contention:

charm transitions are a unique portal for obtaining a novel access to flavour dynamics with the experimental situation being a priori favourable (apart from absence of Cabibbo suppression)!

I Inconclusiveness in Interpretation of D⁰ Oscillations

(1.1) Basics

- © fascinating quantum mechanical phenomenon
- ambiguous probe for New Physics (=NP)
- important ingredient for NP CP asymm. in D⁰ decays

$$x_{\rm D} = \frac{\Delta m_D}{\Gamma_{\rm D}}$$
 $y_{\rm D}$


```
D<sup>0</sup>-D<sup>0</sup> oscillations `slow' in the SM
How `slow' is `slow'?
x_D, y_D \sim SU(3)_{Fl} \times 2sin^2 \theta_C < few \times 0.01
on-shell transitions
off-shell transitions
```

While the history of predicting x_D , y_D does not fill one of the glory pages of theoret. HEP, we are not completely off the mark either -- see for example:

hep-ph/9712475 (Lecture notes from 1997): `CP Violation -- an Essential Mystery in Nature's Grand Design' p.57f: "It is often stated that the SM predicts ... $x_D, y_D \le 3 \times 10^{-4}$ I myself am somewhat flabbergasted by the boldness of such predictions... I cannot see how anyone can make such a claim with the required confidence...[my estimate] $x_D, y_D|_{SM} \le 10^{-2}$." 2 general comments:

(A) $x_D \ll y_D$ not a natural scenario!

If $D^0 \rightarrow f \rightarrow \overline{D^0}$ via an *on*-shell final state then $D^0 \rightarrow "f" \rightarrow \overline{D^0}$ via an *off*-shell final state \Rightarrow dispersion relation connects Δm_D and $\Delta \Gamma_D$

(B)

GIM suppression $(m_s/m_c)^4$ of usual quark box diagram un-typically severe!

statement oscillations of mesons built from up-type quarks teach us about down-type quark dynamics

2 general comments:

(A) $x_D < y_D$ natural in SM, yet $x_D < y_D$ not!

If $D^0 \rightarrow f \rightarrow \overline{D^0}$ via an *on*-shell final state then $D^0 \rightarrow "f" \rightarrow \overline{D^0}$ via an *off*-shell final state \Rightarrow dispersion relation connects Δm_D and $\Delta \Gamma_D$

(B)

GIM suppression $(m_s/m_c)^4$ of usual quark box diagram un-typically severe!

statement oscillations of mesons built from up-type quarks teach us about down-type quark dynamics

is misleading

(1.2) Numbers

2 complement. approaches to evaluating Δm_D and $\Delta \Gamma_D$ in the SM:

`inclusive':

OPE in powers of $1/m_c$, m_s , μ_{had} (quark condensates)

 $\begin{array}{c} \text{Uraltsev,IB,Nucl.Phys.B592('01)} \\ \hline \text{m}_{s}^{2}\text{m}_{had}^{4}/\text{m}_{c}^{6}(\text{vs. }\text{m}_{s}^{4}/\text{m}_{c}^{4})} \end{array} \\ \hline \text{power counting in 1/m}_{c} \text{ can be quite iffy} \\ \hline \text{power counting in 1/m}_{c} \text{ can be quite iffy} \\ \hline \text{x}_{D}(\text{SM})|_{OPE}, \text{y}_{D}(\text{SM})|_{OPE} \sim \mathcal{O}(10^{-3}) [\text{x}_{D}(\text{SM}) < \text{y}_{D}(\text{SM})] \\ \hline \text{unlikely uncertainties can be reduced} \end{array}$

9

'exclusive': estimate SU(3)_{Fl} breaking from phase space for
 2-, 3-, 4-body modes
 A. Falk et al., Phys. Rev. D65 (`02)

$$y_{D}(SM) \sim 0.01 \longrightarrow 0.001 \le |x_{D}(SM)| \le 0.01$$

dispersion relation

My conclusion: $x_D, y_D \le 0.01$

could be due `merely' to SM dynamics --

- even then it would be a great discovery &
- it should be measured accurately --

must know
 (i) whether (x_D,y_D) ≠0 & (ii) x_D=? vs. y_D = ?
 irrespective of theory -- like for ε'/ε_K!

yet might also contain large contributions from NP! How to resolve this conundrum?

- theoretical breakthrough?
- CP violation!

II *C*P with & without D^o Oscillations

© existence of three-level Cabibbo hierarchy

SM rate CF : CS : DCS ~ 1 : 1/20 : 1/400

(2.1) *CP* without D⁰ Oscillations

(2.1.1) time integrated partial widths

final state interact. Second state interact. Second state interact. Second state signal Second state signal

© Cabibbo favour. (CF) modes: need New Physics (except *)

© 2x Cabibbo supp. modes (DCS):need New Physics (except *)

exception *: $D^{\pm} \rightarrow K_{S[L]} \pi^{\pm}$ interference between $D^{+} \rightarrow \overline{K^{0}} \pi^{+}$ and $D^{+} \rightarrow \overline{K^{0}} \pi^{+}$ CF DCSin KM only effect from CP in $K^{0} - \overline{K^{0}}:A_{S}=[+]_{S}-[-]_{S}= -3.3 \times 10^{-3}$

exists model by G. D'Ambrosio ('01), which creates observable effect in $D^{\pm} \rightarrow K_{S[L]} \pi^{\pm}$ while not affecting oscillations. 12 Ix Cabibbo supp. modes (SCS) possible with KM -- benchmark: O(λ⁴) ~ O(10⁻³) New Physics models: O(%) conceivable useful & detailed: Grossman, Kagan, Nir hep-ph/0609178

if observe direct $\mathcal{CP} \sim 1\%$ in SCS decays --

• Is it New Physics for sure?

• Size of weak phase (and chirality) of its effective operator?

must analyze host of channels in an exercise in theor. engineering

~ sin∆φ_{weak} × sin∆α_{strong} × M₁ × M₂
(known from CKM) (shaped by strong forces)

o choose set of reduced ME -- involves judgment of decay top.
o fit to comprehensive data on D → PP, PV, VV
o quality control provided by over-redundancy in fit

(2.1.2) Final state distributions: Dalitz plots, T-odd moments

Dalitz plots asymmetries

final state interact. © can*not* fake signal

considerable initial overhead -- yet will pay handsome dividends in the long run due to overconstraints

 T-odd moments

 final state interact.

 Image: State interact.

very promising -- most effective theoretical tools not developed yet for small asymmetries (except Dalitz plot) Pilot study by Focus (CLEO-c?)

Objective Content in the symmetry likely to be larger than integrated one

© angular asymmetry can provide info on chirality of underlying effective operator! 14 An example for a T odd distribution

 $K_L \to \pi^+ \pi^- e^+ e^-$ BR ~ 3 × 10⁻⁷

 ϕ = angle between $\pi^{+}\pi^{-}$ & e^{+}e^{-} planes forward-backward asymmetry in ϕ : A= 14 % driven by ϵ =0.002 -- i.e. trade BR for size of asymmetry!

 $\mathsf{D} \twoheadrightarrow \mathsf{K} \ \overline{\mathsf{K}} \ \pi^* \pi^-$

 $\phi = \text{ angle between } \pi^{+}\pi^{-} \& K \overline{K} \text{ planes}$ $d\Gamma/d\phi (D \rightarrow K \overline{K} \pi^{+}\pi^{-}) = \Gamma_{1} \cos^{2}\phi + \Gamma_{2} \sin^{2}\phi + \Gamma_{3} \cos \phi \sin \phi$ $d\Gamma/d\phi (\overline{D} \rightarrow K \overline{K} \pi^{+}\pi^{-}) = \overline{\Gamma_{1}} \cos^{2}\phi + \overline{\Gamma_{2}} \sin^{2}\phi + \overline{\Gamma_{3}} \cos \phi \sin \phi$

- •• Γ_3 drops out after integrating over ϕ •• Γ_1 vs. Γ_1 & Γ_2 vs. Γ_2 : $\mathcal{O}P$ in partial widths
- Todd moments $\Gamma_3, \overline{\Gamma}_3 \neq 0$ can be faked by FSI yet $\Gamma_3 \neq \overline{\Gamma}_3 \longrightarrow \mathcal{C}^{p!}$

15

(2.2) CP with D^o Oscillations

All the previously given justifications for CP searches *plus*

L(∆C=2) ≠ 0
 provides a much wider stage for ∠P to surface
 allowing us to decide whether NP is involved.

Analogies with two other cases, one from the past & one from the present: $K^0 \& B_s$ oscillations

∆S=2:

Assume -- contrary to history -- that people had accepted the SM with 2 families when $\Delta M_{\rm K} \neq 0$ was observed & knew about possibility of \mathcal{P} .

They would have reasoned that LD dynamics could produce ~ 1/3 of ΔM_{K} via $K^{0} \rightarrow "\pi, \eta, \eta', \pi\pi, ... " \rightarrow \overline{K^{0}}$ and SD dynamics via the quark box diagram the rest. This might have led to the proposal to search for $K_{L} \rightarrow \pi\pi$ to establish the presence of NP, namely the 3rd family (which is irrelevant for ΔM_{K}).

 $\Delta B=2$ -- the topical example: The observed value of $\Delta M(B_s)$ is fully consistent with SM expectations -- within sizable uncertainties. Yet a subdominant NP contribution to $\Delta M(B_s)$ could still provide the dominant source of time dependent \mathcal{SP} in $B_s \rightarrow \psi \phi$! oscillations can generate time *dependent* CP asymmetries • none seen so far down to the 1% (1%/tg² θ_c) level --

- reference they are ~ (x_D or y_D) (t/τ_D)sin ϕ_{weak} ;
 - •• with x_D , $y_D \le 0.01$ a signal would not have been credible
 - yet now it is getting interesting!

Scenario (A)

LD dynamics (involving barely 2 families) cannot generate \mathcal{CP} ! I.e., minimal scenario: no significant \mathscr{L}^{P} in $\mathcal{L}(\Delta C=2)$, direct \mathcal{CP} only: (i) |q| = |p|, whereas (ii) $|T(D \rightarrow f)| \neq |T(\overline{D} \rightarrow \overline{f})|$ (iii) Im $(q/p)\overline{\rho}(f) \neq 0$ • CF: $K_{s}\pi^{0}$, $K_{s}\rho^{0}$, $K_{s}\phi^{1}$ ImV(cs)V(ud) = $\eta |V(cb)|^{2} \sim 0.6 \times 10^{-3}$ □ DCS: $D^0 \rightarrow K^+\pi^- - - ImV(cd)V(us) = 0$ yet NP models a la D'Ambrosio □ CS: $D^0 \rightarrow K^+K^-, \pi^+\pi^-$ -- time depend. & indep. CP

Scenario (B)

NP contributes significantly to $L(\Delta C=2)$ \rightarrow expect significant source for \mathcal{CP} in $L(\Delta C=2)$, (i) $|q| \neq |p|$, (ii) $|T(D \rightarrow f)| \neq |T(\overline{D} \rightarrow \overline{f})|$, (iii) Im $(q/p)\overline{\rho(f)} \neq 0$ $\Box CF: D^0 \rightarrow K_c \phi \quad A_{CD}(t) = (X_D Sin\phi_{ND} - Y_D \varepsilon_{ND} COS\phi_{ND})(t/\tau_D)$

$$\Box CF: D^{\circ} \rightarrow K_{S} \phi \quad A_{CP}(T) = (X_{D} sin \phi_{NP} - Y_{D} \varepsilon_{NP} cos \phi_{NP})(T)$$

$$L(\Delta C=2) \rightarrow \phi_{NP} \& \varepsilon_{NP} = 1 - |q/p|$$

$$\Box CS: D^{0} \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-} A_{CP}(t) = (x_{D}sin\phi'_{NP} - y_{D}\varepsilon_{NP}cos\phi'_{NP})(t/\tau_{D})$$
$$D^{0} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-} \Gamma_{3}(t), \Gamma_{3}(t) !$$

- □ DCS: $D^0 \rightarrow K^+\pi^-$ -- ditto (+NP models a la D'Ambrosio)
- □ SL: $D^0 \rightarrow I^-X^+ vs. \ \overline{D}^0 \rightarrow I^+X^-$

 $a_{SL} \sim Min[\Delta\Gamma/\Delta M, \Delta M/\Delta\Gamma] sin \phi_{NP}$, $(\Delta\Gamma/\Delta M) \sim O(1)$

(2.3) Benchmarks

Allowed New Physics scenarios could produce P close to present experim. bounds, but hardly higher!

o time dependant CP asymmetries in

• $D^0 \rightarrow K^+K^-, \pi^+\pi^-, K_S \phi$ down to $\mathcal{O}(10^{-4})$

• $D^0 \rightarrow K^+ \pi^-$ down to $O(10^{-3})$

LHCb: ~ 5×10^7 D* \rightarrow D $\pi \rightarrow [KK]_D \pi$ in 10⁷ sec

- o direct \mathcal{Q}^{p} in partial widths of
 - $D^{\pm} \rightarrow K_{S[L]} \pi^{\pm}$ down to $O(10^{-3})$
 - in a host of 1xCS channels down to $O(10^{-3})$
 - in 2xCS channels down to $O(10^{-2})$
- o direct $\mathscr{C}P$ in the final state distributions:

Dalitz plots, T-odd correlations etc. down to $O(10^{-3})$

III Conclusions & Outlook

Did not discuss *CP* through existence of transition: $e^+e^- \rightarrow \overline{D}^0 D^0 \rightarrow 2$ CP eigenstates of same parity Cleo-c & BESIII [Babar should have candidates for $e^+e^- \rightarrow B_d B_d \rightarrow 2 CP eigenstates of same parity]$ there is a lot of work to be done • establish $(x_D, y_D) \neq 0$ • determine $x_D = ? vs. y_D = ?$ □ go after ℓP `Nil sine magno labore!' there is fame within your grasp!