Charm Physics: after the recent charm mixing results & implications for SuperB

David Asner Carleton University

Introduction

Charm physics in the era of the LHC falls into two broad categories 1) Precision CKM physics

2) Rare Charm Processes

Introduction

A THE MERICANSING SAFET STATISTICS IN THE PARTY CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A

- Charm physics program at SuperB falls into two broad categories
 - 1) Precision CKM physics
 - Direct determination: V_{cd}, V_{cs} & unitarity tests
 - Precision tests of (Lattice) QCD calculations
 V_{ub}, V_{cd}, V_{td}, V_{td}/V_{ts}

Enables precision Unitarity Triangle measurements (New Physics searches)

2) Rare Charm Processes

Introduction

- Charm physics program at SuperB falls into two broad categories
 - 1) Precision CKM physics
 - Direct determination: V_{cd}, V_{cs} & unitarity tests
 - Precision tests of (Lattice) QCD calculations
 V_{ub}, V_{cd}, V_{td}, V_{td}/V_{ts}

Enables precision Unitarity Triangle measurements (New Physics searches)

2) Rare Charm Processes

- Oscillations
- CP violation
- Rare decays

Search for New Physics signatures in Charm

Paris, May 9, 2007

Experiments

- Current experiments
 - CLEO-c (0.75 fb⁻¹@3.77 GeV, 0.75 fb⁻¹@4.17 GeV)
 - BABAR, Belle (combined 2 ab⁻¹)
 - CDF, DO (combined 16 fb⁻¹)
- Approved experiments
 - BESIII (20 fb-1 @3.77 GeV, 12 fb⁻¹ @4.17 GeV)
 - LHCb (10 fb⁻¹)
 - PANDA
- Proposed experiments
 - LHCb upgrade (100 fb⁻¹),
 - Super B-factory (50 ab⁻¹ ~10 GeV, 350 fb⁻¹ ~4 GeV)

Outline

A TENEDOWN THE SAME SAME SAME SHOW THE PROPERTY CONTRACTOR AND AN ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDR

- For Overview of Charm Physics at SuperB - see my talk at SuperB IV
- Today's talk concentrates on mixing
 - Formalism
 - Expectations
 - Results
 - Emphasis on recent BaBar & Belle results
 - Implications for SuperB
 - · Benefits of additional charm threshold data

Paris, May 9, 2007

The second states and the second states of the second states and the second second second second second second

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix} = (M - i\Gamma/2) \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix}$$

Two state system

Mass Eigenstates≠Flavor Eigenstates

7

$$R(D^{0}(t) \rightarrow f) = |A_{f}|^{2} e^{-\Gamma t} \left| 1 + \left[y \operatorname{Re}(\lambda) - x \operatorname{Im}(\lambda) \right] (\Gamma t) + |\lambda|^{2} \frac{x^{2} + y^{2}}{4} (\Gamma t)^{2} \right|$$
 Oscillations "slow

Parameter definitions

Mixing parameters: $x=\Delta m/\Gamma$, $y=\Delta\Gamma/2\Gamma$ Mixing Rate: $R_M = (x^2+y^2)/2$ D^0/\overline{D}^0 relative strong phase δ Effective parameters: $y^2 = y\cos\delta - x\sin\delta$; $x^2 = y\sin\delta + x\cos\delta$

CP violation:
$$\lambda = \frac{q}{p} \frac{A_f}{A_f} \quad A_M = |q/p| - 1$$

Paris, May 9, 2007

Charm Mixing

SM Charm Mixing has down-type quarks in the loop

Double Cabibbo Suppressed GIM Suppressed SM: Short distance 10⁻⁶ - 10⁻³ Long distance 10⁻³ - 10⁻²

Expect hadronic intermediate states to dominate

- Some models avoid large FCNC in B & K sectors by having large mixing in charm
- New physics (NP) in loops implies
 - $\mathbf{x} \equiv \Delta m / \Gamma >> \mathbf{y} \equiv \Delta \Gamma / 2\Gamma;$
 - but long range effects complicate predictions.
- Large CPV in mixing indicates New Physics

Paris, May 9, 2007

5th SuperB Workshop

9

Charm Mixing: Several Probes

A THE MERCHANCE SHAFT STATISTICS IN THE REAL PROPERTY STATES OF THE REAL PROPERTY STATES

Experimental probes

- Semileptonic Decay: Sensitive to R_M, No DCS process

Sensitive to y

Sensitive to x`², y`

- Search for $\Gamma(D^0 \rightarrow K^{(*)+}|^{-}\nu)$
- CP Eigenstate:
 - $D^{0}(t) \rightarrow CP$ Eigenstate
- Wrong-sign K⁺π⁻:
 - D⁰(†) \rightarrow K⁺ π -:
- Wrong-sign multibody $K^{+}\pi^{-}\pi^{0}$, $K^{+}3\pi$: Sensitive to R_{M}
 - $D^{0}(\dagger) \rightarrow K^{+}\pi^{-}\pi^{0}$, $K^{+}3\pi$
- Dalitz plot:
 - D⁰ (†)→K_sπ⁺π⁻:
- Quantum Correlations:
 - e+e- $\rightarrow D^0 \overline{D^0}(n) \gamma(m) \pi^0$:

(CLEO,FOCUS,BABAR,Belle) -π⁰, K+3π: Sensitive to R_M (CLEO, BABAR, Belle) Sensitive to x, y (CLEO, Belle) Primarily sensitive to y, cos δ (CLEO-c)

(E791, CLEO, BABAR, Belle)

(E791, CLEO, FOCUS, BABAR, Belle)

Paris, May 9, 2007

"Evidence" for D Mixing: Only 2 results > 30

A THE MERICANSKE STATES STATES & MOODER'S CONSTRUCTION OF A DATE O

- Babar (384 fb⁻¹) $D^0 \rightarrow K\pi$
 - c.w. Belle (400 fb⁻¹) $x'^{2} = (0.18^{+0.21}_{-0.23}) \times 10^{-3} y' = (0.6^{+4.0}_{-3.9}) \times 10^{-3}$
- Belle (540 fb⁻¹) $D^0 \rightarrow KK, \pi\pi$
 - c.w. W.A. (includes Belle '03) $y_{CP} = (0.90 \pm 0.42)\%$
- Belle (540 fb⁻¹) $D^0 \rightarrow K_S \pi \pi$
 - c.w. CLEO (9 fb-1)

 $x = (1.8 \pm 3.4 \pm 0.6)\%$ $y = (-1.4 \pm 2.5 \pm 0.9)\%$

- CLEO-c (281 pb⁻¹) new results expected soon
 - y, x^2 and $\cos\delta$

Before Moriond '07

NO MIXING (x,y)=(0,0) excluded: $\checkmark \sim 2.1 \sigma$ Belle $D^0 \rightarrow K\pi$ (no CPV) $\checkmark \sim 2.3 \sigma$ BaBar $D^0 \rightarrow K2\pi/K3\pi$ $\checkmark \sim 2.2 \sigma$ Average γ_{CP}

$$x'^{2} = (-0.22 \pm 0.30 \pm 0.21) \times 10^{-10}$$
$$y' = (9.7 \pm 4.4 \pm 3.1) \times 10^{-30}$$

$$y_{CP} = (1.31 \pm 0.32 \pm 0.25)\%$$

$$x = (0.80 \pm 0.29 \pm 0.17)\%$$
$$x = (0.33 \pm 0.24 \pm 0.15)\%$$

$$y = (0.33 \pm 0.24 \pm 0.15)\%$$

After Moriond '07

NO MIXING (x,y)=(0,0) excluded: $\checkmark 3.9 \sigma$ BABAR $D^0 \rightarrow K\pi$ (no CPV) $\checkmark \sim 2.4 \sigma$ Belle $D^0 \rightarrow K_S\pi\pi$ $\checkmark \sim 3.5 \sigma$ New Average $y_{CP}=1.12\pm0.32$

- With great trepidation average all results
 - Use likelihood contours where appropriate
- Consider two scenarios
 - Current results with CLEO-c $\cos \delta = 1.09 \pm 0.66$
 - Current results + anticipating $\cos \delta = 1.0 \pm 0.1$

Paris, May 9, 2007

Projected Sensitivity				
Exp't / 1 σ	у _{СР} (10 ⁻³)	y' (10 ⁻³)	x'² (10-4)	cosδ
B-factories (2ab ⁻¹)	2-3	2-3	1-2	-
SuperB (50 ab ⁻¹)	0.5	0.7	0.3	-
LHCb (10 fb ⁻¹) Only B->D*	?	0.7	0.7	-
LHCb (100 fb ⁻¹) Prompt D*	?	?	?	-
CLEO-c (750 pb ⁻¹)	10	-	2-3	0.1-0.2
BESIII (20 fb ⁻¹)	4	-	0.5-1	0.05
SuperB - 4 GeV (0.2 ab ⁻¹)	1-2	-	<0.2	<0.05

17

- 5 σ signal in both y_{CP} & $D^0 \rightarrow K\pi$ possible with $2ab^{-1} @ \Upsilon(4S)$
- LHCb can confirm signal in $D^0 \rightarrow K\pi y_{cp}$ study in progress
- 50 time independent signal in y not likely @ BESIII
 - Requires ~1 month run at SuperB (4 GeV) Paris, May 9, 2007 5th SuperB Workshop

CPV in D Mixing

In Standard Model x≤y Short distance 10⁻⁶ - 10⁻³ Long distance 10⁻³ - 10⁻²

"Evidence" on high side of SM LD expectation Could this be due (in part) to New Physics? CP asymmetries involving D oscillations O(10⁻⁶) in SM Large CPV in mixing indicates NP

Current results consistent with no CP violation $D^0 \rightarrow K + \pi$ - constrain -99.5% $A_M < +100\%$ @95% C.L. (Belle) $D^0 \rightarrow K + K - , \pi + \pi - A_{\Gamma} \cong A_M y \cos \phi - x \sin \phi = (0.01 \pm 0.30 \pm 0.15)\%$ (Belle) Consistent with both $A_M = \pm 1$ and $\sin \phi = \pm 1$

Paris, May 9, 2007

Systematic Uncertainties

- Systematics should remain under control for mixing and even more so for CP violation measurements
- Due to canceling in ratios, ratios of ratios, differences, ratios of differences etc.
- Dominant Systematic Uncertainty
 - R_M from semileptonic (# of unphysical sign combinations)
 - Ycp (description of background)
 - $D^0 \rightarrow K\pi$ (description of bkgd, decay time resolution)
 - $D^0 \rightarrow K_S \pi \pi$ (bkgd t dep Dalitz correlation, Dalitz model)
 - Quantum-Correlated (description of bkgds, QC bkgds)
- Measurement/Limit on CP violation in charm mixing at SuperB likely to be statistics limited

Paris, May 9, 2007

Summary

- Sensitivity studies for LHCb (mixing & CPV) and SuperB (CPV) are not complete
- Individual measurements show
 - Evidence (3σ) for Charm Mixing
 - No sign of CP violation in Charm Mixing
- HFAG Preliminary indicate 50 signal
- Full B-factory data samples could attain 5σ results for each of y_{cp} and $D^0 \rightarrow K\pi$
- Precision measurments of charm mixing at SuperB
 - 4 GeV data measure $\cos \delta$ directly
 - 5σ crosscheck with different systematic uncertainties
- SuperB will constrain CPV in charm mixing
 - $1\sigma \sim (5-10)\%$ stat. only for CPV in x, y_{cp} , y' (Recall SM~10⁻⁶)

Paris, May 9, 2007

- With great trepidation average all results
 - Use likelihood contours where appropriate
- Consider two scenarios
 - Current results with CLEO-c $\cos \delta = 1.09 \pm 0.66$
 - Current results + anticipating $\cos \delta = 1.0 \pm 0.1$

Paris, May 9, 2007