ISR studies at flavour factories

Germán Rodrigo

Factory Workshop, 9-11 May 2007, Paris

radiative return

The way to get the hadronic cross section at a fixed energy machine

Photon radiated off the initial e^+e^- (**ISR**) reduces the effective energy of the collision ($s r > Q^2$)

 $d\sigma(e^+e^- \rightarrow hadrons + \gamma) = \\ H(Q^2, \theta_{\gamma}) d\sigma(e^+e^- \rightarrow hadrons)$

Large luminosities of flavour factories:

- *** KLOE** @ DAPHNE
- *** CLEO-C** @ CESR
- * BaBar @ PEPII and BELLE @ KEK-B

compensate factor α/π from photon radiation

✓ High precision measurement of R(s) over the full range of energies, from threshold up to \sqrt{s} in an homogeneous data set

suppressed at **B-factories:**

very hard photons for low hadronic invariant masses

DAPHNE: ISR dominates for untagged photons (small angle), but suppress threshold tail tagged photons (large angle) FSR 10-20%

radiative phi decays

Czyż,Grzelinska,Kühn,PLB611(05)116, KLOE PLB634(05)148

 $e^+e^- \rightarrow \phi \rightarrow \pi^+\pi^-\gamma$ pollutes the extraction of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ close to the phi mass

charge asymmetry allows to discriminate between different models of the radiative decay

$$\phi \
ightarrow \ \pi^+ \pi^- \gamma$$
 , $\pi^0 \pi^0 \gamma$,

$$\phi \rightarrow (f_0(980) + f_0(600)) \gamma \rightarrow \pi \pi \gamma$$

other contributions (beyond sQED + VMD + radiative phi decays) might be important in the threshold region [Pancheri,Shekhovtsova,Venanzoni]

- LL: EVA [Binner, Melnikov,Kühn] EVA4π [Czyż,Kühn]
- resums big logs L=Log(s/m_e²)
 to all orders
- Extra collinear emission integrated out: no momentum conservation
- Untagged photon: double counting

NLO: PHOKHARA

- LL+subleading terms (1%)
- Full angular dependence
- Momentum conservation
- Tagged or untagged photons
- ISR accuracy 0.5% (conservative)
- (goal: 0.1-0.2% by adding LL two-loop)

😻 PHOKHARA - Mozilla Firefox 🎱 📃 🗖				×
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp				\diamond
\bigcirc	6 🔇 🖓	III http://ific.uv.es/~rodrigo/phokhara/		
		PHOKHARA radiative return at meson factories		
	Physics	Electronpositron annihilation into hadrons plus an energetic photon from initial state radiation (ISR) allows the hadronic cross-section to be measured over a wide range of energies at high luminosity meson factories [DAPHNE, CESR, PEP-II, KEK-B].		
	Content	PHOKHARA is a Monte Carlo event generator which simulates this process at the next-to-leading order (NLO) accuracy. This includes virtual and soft photon corrections to one photon emission events and the emission of two real hard photons.		
	Downloads	VERSION 6.0 (December 2006): Lambda pair production added as new hadronic channel : $e^+e^- \rightarrow \Lambda (\rightarrow \pi^- p) \overline{\Lambda} (\rightarrow \pi^+ \overline{p}) \gamma$. • manual [<u>Postscript</u> , <u>PDF</u>], source [<u>uuencoded</u>]		
	Forthcoming features	 Full one-loop radiative corrections for muon production Simulation of narrow resonances (J/ψ and ψ(2S)) Simulation of other exclusive hadronic channels FSR for three pion production 		•
Done				

PHOKHARA 6.0 (December 2006)

Fixed order radiative corrections: NLO accuracy

Hadronic channels

 $\pi^{+}\pi^{-}$ $\mu^{+}\mu^{-}$ $2\pi^{0}\pi^{+}\pi^{-}, 2\pi^{+}2\pi^{-}$ $p \overline{p}, n \overline{n}$ $\pi^{0}\pi^{+}\pi^{-}, K^{+}K^{-}, K^{0} \overline{K}^{0}$ $\Lambda(\rightarrow \pi^{-}p) \overline{\Lambda}(\rightarrow \pi^{+} \overline{p})$

+ radiative phi decays background and normalization

Pauli and Dirac Form Factors

new channels

Tagged or untagged photons

Modular structure: easy replacement of hadronic form factors

NLO

ISR virtual+soft corrections to $e^+e^- \rightarrow hadrons + \gamma$ factorizable

$$\sigma = \int L_{ISR}^{\mu\nu} H_{\mu\nu}$$

independent of the hadronic channel

FSR @ NLO dominated by simultaneous emission of one photon from FSR and another one from ISR (+ virtual corrections)

PHOKHARA includes at present gauge invariant sets of *amplitudes* which lead to infrared-finite charge-even combinations for π + π -, *KK* and μ + μ -

pion form factor

Phys. Lett. B606 (2005) 12

Statistical error negligible (1.5 Million events) total systematic error 1.3%

ongoing analysis at large and small photon angles with systematics below 1%

BABAR

PS170

2.75

 $M_{op} (GeV/c^2)$

0

2.25

2.5

nucleon form factors

radiative return in the **time-like** region [Czyż,Kühn,Nowak,GR EPJC35(04)527] relative fase between G_E and G_M requires access to Nucleon spin

New vector resonance with J^{PC}=1⁻⁻

First reported by BaBar PRL95(2005)142001

$$M_{Y(4260)} = 4259 \pm 8(stat)_{-6}^{+2}(syst) \quad MeV$$

$$\Gamma_{Y(4260)} = 88 \pm 23(stat)_{-4}^{+6}(syst) \quad MeV$$

no evidence in $e+e-\rightarrow pp\gamma$ BaBar PRD73(2006)012005

Theoretically challenging (not predicted by theoretical calculations of charmonium spectra)

BaBar PRD74(2006)091103

another vector resonance with J^{PC}=1⁻⁻

$$M_{X} = 2175 \pm 10 \pm 15 \text{ MeV}$$

 $\Gamma_{X} = 58 \pm 16 \pm 20 \text{ MeV}$

No Y(4260) signal

Summary

- **radiative return:** not only hadronic cross-section and $(g-2)_{\mu}$ but also valuable information on hadronic physics
 - **statistics** is not an issue at flavour factories (Super B) but **systematics**
 - Many exclusive channels at **B-factories at 5-15% accuracy** and new resonances
 - for measurements aimed at few % NLO event generators (PHOKHARA) are mandatory J/ Ψ and Ψ (2S) simulations coming soon

