Search for neutral MSSM Higgs bosons decaying into two muons with CMS

Hendrik Weber
on behalf of the

CMS Collaboration

S. Marcellini, G. Masetti, F. Primavera (INFN Bologna)
A. Perieanu, S. Schael, H. Weber (RWTH Aachen)

I. Physikalisches Institut B
RWTH Aachen

Higgs Hunting
Orsay 2012
motivation

Why muons?

- $\varphi \rightarrow b\bar{b} \approx 90\%$ dominant for small m_A but hard to reconstruct due to the 4 b-jets in the final state
- $\varphi \rightarrow \tau^+\tau^- \approx 9\%$ but the reconstruction of m_A and Γ_A is very difficult
- $\varphi \rightarrow \mu^+\mu^- \approx 0.03\%$ is small, but it gives a clean signature in the detector and gives the opportunity to reconstruct m_A and Γ_A and through that $\tan \beta$

MSSM Higgs bosons masses and decay width
associated production (dominant for high $\tan \beta$)

branching ratio drops for low $\tan \beta$ when decay into $t \bar{t}$ becomes available
signal & backgrounds

signal
- two isolated muons with high p_T
- two b-jets with relatively low p_T
- low missing transverse energy E_T

Drell-Yan $Z/\gamma^* \rightarrow \mu\mu$
- no b-jets
- low E_T

top quark pairs
- non-isolated muons with low p_T
- high E_T due to the neutrinos from the W^{\pm}-decay

$bbZ/\gamma^* \rightarrow \mu\mu$
- same event topology as the signal
- two isolated muons
- two b-jets
- low E_T
- 5.56 fb$^{-1}$ recorded through 2011
- 4.96 fb$^{-1}$ certified and used for this analysis
- data is splitted into two runs (A & B) with different pile-up scenario
- corrections on MC concerning the pile-up are applied
the CMS detector

Compact Muon Solenoid
event selection

pre-selection:

- basic muon selection
 - $p_T \mu_1 > 30 \text{ GeV}$ & $p_T \mu_2 > 20 \text{ GeV}$
 (asymmetric due to trigger thresholds)
 - $|\eta_\mu| < 2.1$
 - isolation
- $E_T < 30 \text{ GeV}$

event categories:

- 1 tagged b-jet
 - $p_T^{\text{Jet}} > 20 \text{ GeV}$
 - $|\eta_{\text{Jet}}| < 2.4$
 - loose b-tag ID
- 1 additional muon
 - $p_T^\mu > 3 \text{ GeV}$
 - $|\eta_{\text{Jet}}| < 2.4$
 - separation to other muons
- everything else

invariant di-muon mass after pre-selection
- category 1 has best signal to background ratio
- category 3 has highest statistics
- category 1 and 3 have highest sensitivity
- category 2 has low sensitivity, but serves as verification if a signal appears in category 1 or 3
background estimation from data

- background model: linear combination of
 - Breit-Wigner at the Z peak
 - photon propagator contribution
 - both multiplied with a falling exponential for the pdf contribution
 - Z parameters fixed from fit to data with crystal ball (outside of signal region)

- signal model:
 - linear combination of three Breit-Wigner peaks, convoluted with a common detector resolution
 - signal parameters fixed by a fit to simulation
background estimation from data

- fit of $s + b$ hypothesis to data
- signal strength as free parameter
- signal and background shapes used in limit calculation:
 - signal shape from fit to simulation
 - background shape from fit to data
- confidence level scanned in $m_A - \tan \beta$ plane
- limits calculated with signal samples closest to 95% C.L. in the scan

CMS Preliminary 2011 $\sqrt{s}=7$ TeV
$m_A=140$ GeV/c2 $\tan \beta=50$ Cat.1
$L=4.96$ fb$^{-1}$
χ^2/ndf: 0.65
$P(\chi^2)$: >0.99
$\lambda: -0.009 \pm 0.001$ [(GeV/c2)$^{-1}$]
$f_{BWS}^0: 0.022 \pm 0.004$
$f_{\text{Background}}: 1.000 \pm 0.004$
$f_{\text{Signal}}: 0.047 \pm 0.004$
Combination

biggest contribution to the combination from categories 1 & 3
conclusions

- \(m_A = 110 - 180 \text{ GeV} \) excluded at \(\tan \beta = 30 \)
- single mass points with \(\tan \beta = 15 \) can be excluded
- overall good agreement with expectations
- no significant excess (\(> 2 \sigma \)) observed
- expectations for 60 fb\(^{-1}@14 \text{ TeV} \) from TDR exceeded with only 5 fb\(^{-1}@7 \text{ TeV} \)

outlook

- update to \(\sqrt{s} = 8 \text{ TeV} \)
- contribution to the final limit combination for CMS
Backup
Category 1 (b-tagged jet)

limits calculated using the asymptotic algorithm using the CLs method
Category 2 (additional muon)

poor sensitivity due to very low statistics in this category
Category 3 (everything else)

- Observed limit
- Expected limit
- Expected limit ± 1σ
- Expected limit ± 2σ

good sensitivity due high statistics in this category