Higgs boson production via gluon fusion in the POWHEG approach in the SM and in the MSSM

Emanuele A. Bagnaschi (LPTHE Paris)

In collaboration with:
Prof. Giuseppe Degrassi (Università di Roma 3)
Dott. Pietro Slavich (LPTHE Paris)
Dott. Alessandro Vicini (Università di Milano, INFN Milano)
Talk structure

$gg \rightarrow H$ in POWHEG

Consistency checks

Results

Conclusions

Future developments
Gluon fusion: current results

Most of the currently available codes use the effective theory in the $m_{\text{top}} \to \infty$ limit (HEFT).

\begin{itemize}
\item[(a)] LO
\begin{itemize}
\item[(b)] Real emission
\item[(c)] Virtual correction
\end{itemize}
\end{itemize}

Most important programs

\begin{itemize}
\item HQT - (NNLO+NNLL)-QCD (HEFT, no PS matching)
\item HNNLO - NNLO parton level MC (HEFT, no PS matching)
\item HRes NLO full, NNLO+NNLO-QCD HEFT (no PS matching)
\item HIGLU, Fehip - NLO full theory (but no PS matching)
\item iHixs - NLO full / NNLO HEFT (but no PS matching)
\item Pythia/Herwig - PS LO (HEFT)
\item MC@NLO/POWHEG - MC NLO + PS (HEFT)
\end{itemize}

The predictions of the HEFT are accurate enough?
Aims of our work

Implementation in the POWHEG framework of the gluon fusion process.
NLO-(QCD+EW) accuracy with exact masses dependence provided by already existing matrix elements:
SM (Aglietti et al, Bonciani et al)
MSSM (Bonciani et al, Degrassi e Slavich)

- Determination of the total cross section with the possibility of imposing realistic acceptance cuts.
- Study of the impact of mass effect on the distributions.
- Individuation and study of observables which allow to distinguish between SM and MSSM.
SM

Features

- Matrix elements expressed in terms of Harmonic PolyLogarithm (HPL).
- Full dependence from quarks mass, both for virtual and real contributions.
- Both NLO-QCD and NLO-EW corrections.
MSSM

Features

- Full dependence from quarks and squarks mass for the real emission diagrams.
- Virtual contributions from diagrams with quarks and gluons with full mass dependence.
- Virtual contributions from diagrams with quarks-squarks-gluinos in the light Higgs limit.
Consistency checks

- Agreement with the previous implementation in POWHEG in the $m_{\text{top}} \to \infty$ limit.
- Comparison with other programs for mutually calculable quantities with on-shell Higgs.
- SM: Total cross-section in agreement with hgvv (Vicini et al).
- SM: p_T distributions in agreement with Fehipro.
- MSSM: Total cross section in agreement with Degrassi&Slavich code.
Results - σ_H in the SM

Total inclusive cross-section.

Cross-section normalized to the one in the $m_{\text{top}} \to \infty$ limit.
Results - $d\sigma/dp_T^H$ in the SM for $m_H = 125$ GeV

- Quarks mass effect $O(15\%)$.
- Suppression at low p_T due to the POWHEG Sudakov form factor.

Emanuele Angelo Bagnaschi (LPTHE Paris)
Higgs boson production via gluon fusion in the POWHEG approach in the SM and in the MSSM
SM: bottom quark role

- The distribution with only the Top quark (exact) has a low p_T a similar behavior to the one in the $m_{\text{top}} \rightarrow \infty$.
- Import bottom quark correction and suppression for small p_T.
- Effect of the same order of the NNLO-NNLL uncertainty band (most accurate evaluation available).
MSSM - Total cross section σ_h - Light Higgs

- Ratio of the total cross section in the MSSM and in the SM, for equal m_h.
- m_h^{max} scenario
- $\tan \beta - m_A$. plane scan.
- The ratio varies between 0.2 and 70.
- What is the role of the scalars?
- In the event of equal MSSM and SM cross-section, how can we distinguish the two models?
Role of the scalars in the MSSM

Ratio of the MSSM to the MSSM with only quarks cross-section.

Ratio of the MSSM only quarks to the SM cross-section.

Emanuele Angelo Bagnaschi (LPTHE Paris)
Higgs boson production via gluon fusion in the POWHEG approach in the SM and in the MSSM
Study of the curve with equal cross-section

Ratio of the p_T^h distribution in the MSSM and the one in the SM for equal Higgs mass.
Study of the curve with equal cross-section

Ratio of the p_T^h distribution in the MSSM and the one in the SM for equal Higgs mass.
Study of the curve with equal cross-section

![Graph showing the ratio of the p_T^H distribution in the MSSM and the one in the SM for equal Higgs mass.]

POWHEG

Ratio of the p_T^H distribution in the MSSM and the one in the SM for equal Higgs mass.

Emanuele Angelo Bagnaschi (LPTHE Paris)

Higgs boson production via gluon fusion in the POWHEG approach in the SM and in the MSSM
Study of the curve with equal cross-section

Ratio of the p_{T}^{H} distribution in the MSSM and the one in the SM for equal Higgs mass.
Study of the curve with equal cross-section

Ratio of the p_T^H distribution in the MSSM and the on in the SM for equal Higgs mass.
Conclusions

- New implementation of the gluon fusion process in POWHEG: NLO-(QCD+EW) accuracy and full mass dependence for quarks and squarks.
- Bottom quark mass effect are not negligible.
- MSSM: non trivial role of quarks and squarks for total and differential cross-sections.
Future developments

Improvements

- Higgs decay.
- Phenomenological study in the SM/MSSM of the various decay channels in presence of acceptance cuts.
 - MSSM: $gg \rightarrow H$
 - MSSM: $gg \rightarrow A$.
 - MSSM: $b\bar{b} \rightarrow h$

Theoretical studies

- Analytical study of the specific behaviors observed in the numerical simulations.
Backup slides
Theoretical uncertainty of the cross section in $gg \to H$

p_T^H spectrum with theoretical uncertainty bands.

Results from Grazzini et al.

Theoretical uncertainty bands relative to the central NNLO+NNLL value.
Mass effects and scale variation

\begin{align*}
\mu_{\text{fac}} &= m_H \\
\mu_{\text{ren}} &= m_H \\
\mu_{\text{fac}} &= \frac{m_H}{2} \\
\mu_{\text{ren}} &= \frac{m_H}{2} \\
\mu_{\text{fac}} &= 2 m_H \\
\mu_{\text{ren}} &= 2 m_H
\end{align*}

p_T^h spectrum with theoretical uncertainty bands in the new POWHEG implementation

As expected the results are almost the same.

Emanuele Angelo Bagnaschi (LPTHE Paris)

Higgs boson production via gluon fusion in the POWHEG approach in the SM and in the MSSM
\(p_T^H \) distribution - NLO vs NLO+PS

Different behavior for small \(p_T \).
The fixed order calculation is divergent while the NLO+PS result goes to zero.
Results - $d\sigma / dp_T^H$ in the SM for $m_H = 120$ GeV

Positive mass correction.
Results - $d\sigma / dp_T^H$ in the SM for $m_H = 120$ GeV

We have that:

$$\frac{R(t,b,\text{exact})}{B(t,b,\text{exact})} > \frac{R(t,\infty)}{B(t,\infty)}$$

from where:

$$\Delta(t,b,\text{exact}) < \Delta(t,\infty)$$
Results - $d\sigma / dp_T^H$ in the SM for $m_H = 500$ GeV

Negative mass correction.

Emanuele Angelo Bagnaschi (LPTHE Paris)

Higgs boson production via gluon fusion in the POWHEG approach in the SM and in the MSSM
Results - $d\sigma / dp_T^H$ in the SM for $m_H = 500$ GeV

We have that:

$$\frac{R(t,b,\text{exact})}{B(t,b,\text{exact})} < \frac{R(t,\infty)}{B(t,\infty)}$$

from where:

$$\Delta(t,b,\text{exact}) > \Delta(t,\infty)$$
EW corrections for $m_h = 120$ GeV

Comparison between the $m_{\text{top}} \to \infty$ distribution and the one with full mass dependence and EW corrections.

Emanuele Angelo Bagnaschi (LPTHE Paris)

Higgs boson production via gluon fusion in the POWHEG approach in the SM and in the MSSM
New results
New results

Emanuele Angelo Bagnaschi (LPTHE Paris)
Higgs boson production via gluon fusion in the POWHEG approach in the SM and in the MSSM
POWHEG

P.O.W.H.E.G = POnitive Weight Hardest Emission Generator

The problem

► Matching of a NLO-QCD Monte Carlo (MC) event generator and Parton showers (PS) to achieve a better description of experimental data.
► Since a PS includes the Leading Log (LL) terms, it is necessary to develop a strategy to avoid double counting.

The solution

► POWHEG generates the hardest emission.
► The interface with the PS requires a p_T ordered (or a p_T vetoed shower).
► Independent from the specific PS implementation.
► Generates events with positive weight.
POWHEG: the generation of the events

The POWHEG formula for the generation of the event is:

\[
d\sigma = \bar{B}(\Phi_1)d\Phi_1 \left\{ \Delta(\Phi_1, p_{T}^{\text{min}}) + \Delta(\Phi_1, p_{T}) \frac{R(\Phi_1, \Phi_{\text{rad}})}{B(\Phi_1)} d\Phi_{\text{rad}} \right\} + \sum_q R_{q\bar{q}}(\Phi_1, \Phi_{\text{rad}})d\Phi_{\text{rad}}d\Phi_1
\]

\[
\bar{B}(\Phi_1) = B_{gg}(\Phi_1) + V_{gg}(\Phi_1) + \int d\Phi_{\text{rad}} \left\{ \hat{R}_{gg}(\Phi_1, \Phi_{\text{rad}}) + \sum_q \hat{R}_{gq}(\Phi_1, \Phi_{\text{rad}}) + \sum_q \hat{R}_{gq}(\Phi_1, \Phi_{\text{rad}}) \right\} + c.r.
\]

\[
\Delta(\Phi_1, p_{T}) = \exp \left\{ -\int d\Phi_{\text{rad}} \frac{R(\Phi_1, \Phi_{\text{rad}})}{B(\Phi_1)} \theta(k_{T} - p_{T}) \right\}
\]

- NLO normalization.
- Sudakov form factor with full matrix elements.
POWHEG: the generation of the events

- The POWHEG formula for the generation of the event is:

\[
d\sigma = \bar{B}(\Phi_1)d\Phi_1 \left\{ \Delta(\Phi_1,p_{T_{\text{min}}}) + \Delta(\Phi_1,p_T) \frac{R(\Phi_1,\Phi_{\text{rad}})}{B(\Phi_1)} d\Phi_{\text{rad}} \right\} + \sum_q R_{q\bar{q}}(\Phi_1,\Phi_{\text{rad}}) d\Phi_{\text{rad}} d\Phi_1
\]

\[
\bar{B}(\Phi_1) = B_{gg}(\Phi_1) + V_{gg}(\Phi_1) + \int d\Phi_{\text{rad}} \left\{ \hat{R}_{gg}(\Phi_1,\Phi_{\text{rad}}) + \sum_q \hat{R}_{qg}(\Phi_1,\Phi_{\text{rad}}) + \sum_q \hat{R}_{gq}(\Phi_1,\Phi_{\text{rad}}) \right\} + \text{c.r.}
\]

\[
\Delta(\Phi_1,p_T) = \exp \left\{ -\int d\Phi_{\text{rad}} R(\Phi_1,\Phi_{\text{rad}}) B(\Phi_1) \theta(k_T - p_T) \right\}
\]

- NLO normalization.
- Sudakov form factor with full matrix elements.
POWHEG: the generation of the events

- The POWHEG formula for the generation of the event is:

\[
d\sigma = \tilde{B}(\Phi_1) d\Phi_1 \left\{ \Delta(\Phi_1, p_{T}^{\text{min}}) + \Delta(\Phi_1, p_T) \frac{R(\Phi_1, \Phi_{\text{rad}})}{B(\Phi_1)} d\Phi_{\text{rad}} \right\} + \sum_q R_{q\bar{q}}(\Phi_1, \Phi_{\text{rad}}) d\Phi_{\text{rad}} d\Phi_1
\]

\[
\tilde{B}(\Phi_1) = B_{gg}(\Phi_1) + V_{gg}(\Phi_1) + \int d\Phi_{\text{rad}} \left\{ \hat{R}_{gg}(\Phi_1, \Phi_{\text{rad}}) + \sum_q \hat{R}_{qg}(\Phi_1, \Phi_{\text{rad}}) + \sum_q \hat{R}_{gq}(\Phi_1, \Phi_{\text{rad}}) \right\} + c.r.
\]

\[
\Delta(\Phi_1, p_T) = \exp \left\{ - \int d\Phi_{\text{rad}} \frac{R(\Phi_1, \Phi_{\text{rad}})}{B(\Phi_1)} \theta(k_T - p_T) \right\}
\]

- NLO normalization.
- Sudakov form factor with full matrix elements.