Indirect constraints on the Higgs boson

Gino Isidori

[INFN, Frascati & CERN]
Theoretical constraints on the Higgs boson mass
(and some implications of its recent measurement)

Gino Isidori
[INFN, Frascati & CERN]

Introduction
The Higgs potential at high energies
Stability and metastability bounds
Vacuum stability at NNLO
Speculations on Planck-scale dynamics
Conclusions
Introduction

The Higgs mechanism, namely the introduction of an elementary SU(2)$_L$ scalar doublet, with ϕ^4 potential, is the most **economical & simple choice** to achieve the spontaneous symmetry breaking \[SU(2)_L \times U(1)_Y \rightarrow U(1)_Q \] that we observe in nature.
Introduction

The Higgs mechanism, namely the introduction of an elementary SU(2)$_L$ scalar doublet, with ϕ^4 potential, is the most economical & simple choice to achieve the spontaneous symmetry breaking [$\text{SU}(2)_L \times \text{U}(1)_Y \to \text{U}(1)_Q$]. that we observe in nature.

\[\mathcal{L}_{\text{higgs}}(\phi, A_a, \psi_i) = D\phi^+ D\phi - V(\phi) \]

\[V(\phi) = -\mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2 + Y^{ij} \psi^i_L \psi^j_R \phi \]

Till very recently only the ground state determined by this potential (and the corresponding Goldstone boson structure) was tested with good accuracy:

\[v = \langle \phi^+ \phi \rangle^{1/2} \sim 246 \text{ GeV} \quad [m_W = \frac{1}{2} g v] \]
Introduction

The Higgs mechanism, namely the introduction of an elementary SU(2)$_L$ scalar doublet, with ϕ^4 potential, is the most economical & simple choice to achieve the spontaneous symmetry breaking $[\text{SU}(2)_L \times \text{U}(1)_Y \rightarrow \text{U}(1)_Q]$ that we observe in nature.

\[
\mathcal{L}_higgs (\phi, A_a, \psi_i) = D\phi^+ D\phi - V(\phi)
\]

\[
V(\phi) = -\mu^2 \phi^+\phi + \lambda (\phi^+\phi)^2 + Y^{ij} \psi^i_L \psi^j_R \phi
\]

Till very recently only the ground state determined by this potential (and the corresponding Goldstone boson structure) was tested with good accuracy:

\[
v = \langle \phi^+\phi \rangle^{1/2} \sim 246 \text{ GeV} \quad [\text{m}_W = \frac{1}{2} g v]
\]

The situation has substantially changed a few weeks ago, with the observation of the 4th degree of freedom of the Higgs field (or its massive excitation):

\[
\lambda_{(\text{tree})} = \frac{1}{2} m_h^2 / v^2 \sim 0.13
\]
Introduction

Actually some information about the Higgs mass was already present in the e.w. precision tests (assuming the validity of the SM up to high scales):
Introduction

Actually some information about the Higgs mass was already present in the e.w. precision tests (assuming the validity of the SM up to high scales):

Message n.1: The observation of the physical Higgs boson with m_h well consistent with the (indirect) prediction of the e.w. precision tests is a great success of the SM!
Still, the SM Higgs potential is “ugly” and hides the most serious theoretical problems of this highly successful theory:

\[V(\phi) = - \mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2 + Y^{ij} \psi^i_L \psi^j_R \phi \]

- **Vacuum instability**
- Possible internal inconsistency of the model ($\lambda < 0$) at large energies
 - [key dependence on m_h]
- Quadratic sensitivity to the cut-off
 - $\Delta \mu^2 \sim \Delta m_h^2 \sim \Lambda^2$
 - (indication of new physics close to the electroweak scale ?)
- SM flavour problem
 - (unexplained span over 5 orders of magnitude and strongly hierarchical structure of the Yukawa coupl.)
Introduction

Still, the SM Higgs potential is “ugly” and hides the most serious *theoretical problems* of this highly successful theory:

\[
V(\phi) = - \mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2 + Y^{ij} \psi_L^i \psi_R^j \phi
\]

- **Vacuum instability**
 - Possible internal inconsistency of the model ($\lambda < 0$) at large energies
 - Key dependence on m_h

- **Quadratic sensitivity to the cut-off**
 - $\Delta \mu^2 \sim \Delta m_h^2 \sim \Lambda^2$
 - (Indication of *new physics* close to the electroweak scale?)

- **SM flavour problem**
 - Unexplained span over 5 orders of magnitude and strongly hierarchical structure of the Yukawa couplings
Stability and metastability bounds

At large field values the shape of the Higgs potential is determined by the RGE evolution of the Higgs self coupling:

\[V_{\text{eff}}(|\phi| \gg v) \approx \lambda(|\phi|) \times |\phi|^4 + O(v^2|\phi|^2) \]

The evolution of λ is determined by two main effects:

Growing λ at large energies

Decreasing λ

\[\lambda(v) \propto \frac{m_h^2}{v^2} \]

\[y_t(v) \propto \frac{m_t}{v} \]

Given the large value of y_t, the destabilization due to top-quark loops is quite relevant.
Stability and metastability bounds

At large field values:

\[V_{\text{eff}}(|\phi|) \approx \lambda(|\phi|) \times |\phi|^4 \]

![Diagram showing the effective potential and the log(Λ/1 GeV) axis with various curves indicating stability and metastability bounds.](image)

Cabibbo et al. '79; Hung '79; Lindner 86; Sher '89;
For $m_h \sim 125$ GeV we are *most likely* in a region where the Higgs potential is not absolutely stable.
The metastability condition:

Can we rule out the model (and determine an upper bound on the new-physics scale Λ) if there is a second (deeper) minimum at large field values?

Not really: The model could still be consistent if the lifetime of the (unstable) e.w. minimum is sufficiently long (i.e. longer than the age of the Universe)
Can we rule out the model (and determine an upper bound on the new-physics scale Λ) if there is a second (deeper) minimum at large field values?

Not really: The model could still be consistent if the lifetime of the (unstable) e.w. minimum is sufficiently long (i.e. longer than the age of the Universe).

We need to estimate the transition probability between false and true vacua.

Model-independent transition via **quantum tunneling** (occurring also a $T=0$).

Bubbles of true vacuum can form in the homogeneous background of the false vacuum. These bubbles are nothing but solutions of the e.o.m. (instantons) that interpolate between the two vacua (bounces).

The bounces of the SM potential are characterised by a size R:

$$h(r) = \left(\frac{2}{|\lambda|}\right)^{1/2} \frac{2R}{r^2 + R^2} \quad (r = x^\mu x_\mu)$$

At the semiclassical level, this leads to:

$$p \sim e^{-\frac{8\pi^2}{3|\lambda|}}$$
Can we rule out the model (and determine an upper bound on the new-physics scale Λ) if there is a second (deeper) minimum at large field values?

Not really: The model could still be consistent if the lifetime of the (unstable) e.w. minimum is sufficiently long (i.e. longer than the age of the Universe)

A precise evaluation of the tunneling probability (integrated over the full volume of the Universe) can only be obtained going beyond the semiclassical approximation.

Highly non-trivial problem, which has been solved in the SM case:

- The tunneling is dominated by bounces of size R, such that $\lambda(1/R)$ reaches its minimum value
- The critical R determine the reference scale of the volume pre-factor:

$$p \sim \max_R \frac{V}{R^4} \frac{U}{e^{-\frac{8\pi^2}{3|\lambda(1/R)|}}$$
* The metastability condition:

Can we rule out the model (and determine an upper bound on the new-physics scale Λ) if there is a second (deeper) minimum at large field values?

Not really: The model could still be consistent if the lifetime of the (unstable) e.w. minimum is sufficiently long (i.e. longer than the age of the Universe)

A precise evaluation of the tunneling probability (integrated over the full volume of the Universe) can only be obtained going beyond the semiclassical approximation.

Highly non-trivial problem, which has been solved in the SM case:

• The tunneling is dominated by bounces of size R, such that $\lambda(1/R)$ reaches its minimum value

• The critical R determine the reference scale of the volume pre-factor:

\[
 p \sim \max_{R} \frac{V}{U} e^{-\frac{8\pi^2}{3|\lambda(1/R)|}}
\]

The leading gravitational effects are also calculable when $1/R$ is not far from (but below) M_{pl}

G.I., Ridolfi, Strumia '01

G.I., Rychkov, Strumia, Tetradis '08
The metastability condition:

\[p \sim \max \frac{V^U}{R^4} e^{-\frac{8\pi^2}{3|\lambda(1/R)|}} \]

\(\lambda(\Lambda) \)

\(\lambda \) can become negative, provided it remains small in absolute magnitude:
Message n.2: For $m_h = 125$ GeV and the present central value of m_{top}, the SM vacuum is unstable but sufficiently long-lived, compared to the age of the Universe.

$$V = \lambda (|\phi|^2 - v^2)^2 \approx \frac{\lambda}{4} h^4$$

$m_h = 125$ GeV
$m_t = 173.2 \pm 0.9$ GeV

Tevatron '12

RGE scale in GeV

INSTABILITY
Vacuum stability at NNLO (for $m_h \sim 125$ GeV)

For $m_h = 125$ GeV and the present central value of m_{top}, the SM vacuum is unstable but sufficiently long-lived, compared to the age of the Universe.

How “precise” is this statement?

A full NNLO analysis has recently become possible:

- Two-loop potential
 - Ford, Jack, Jones '92, '01

- Three-loop beta functions
 - Mihaila, Salomon, Steinhauser 1201.5868
 - Chetyrkin, Zoller, 1205.2892

- Two-loop threshold corrections in relating $\lambda(\mu)$ to the Higgs mass:

 \[\lambda(\mu) = \frac{G_F m_h^2}{\sqrt{2}} + \Delta \lambda(\mu) \]

 (dominant uncertainty)

 Yukawa×QCD
 - Bezrukov, Kalmykov, Kniehl, Shaposhnikov, 1205.2893

 Yukawa×QCD Yuk.×Yuk.
 - Degrassi, Di Vita, Elias-Miro', Espinosa, Giudice, G.I., Strumia 1205.6497
Given the fast running of λ close to the e.w. scale, the dominant uncertainty comes from threshold (non-log enhanced) corrections at the electroweak scale (or in the precise evaluation of the initial condition).

While the smallness of λ (and the other couplings) at high energies imply that the 3-loop terms in the beta functions play a very minor role (useful to control the error).
With the NNLO calculation we are able to derive a very precise relation between Higgs and top masses from vacuum stability:

Absolute stability:

\[
M_h \ \text{[GeV]} > 129.4 + 2.0 \left(\frac{M_t \ \text{[GeV]} - 173.1}{1.0} \right) - 0.5 \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007} \right) \pm 1.0_{\text{th}}
\]

Conservative th. error given the size of the shifts from NLO to NNLO:

+ 0.6 GeV due to the QCD threshold corrections to \(\lambda \)
+ 0.2 GeV due to the Yukawa threshold corrections to \(\lambda \)
− 0.2 GeV from RG equation at 3 loops
− 0.1 GeV from the effective potential at 2 loops.
With the NNLO calculation we are able to derive a **very precise** relation between Higgs and top masses from vacuum stability:
With the NNLO calculation we are able to derive a very precise relation between Higgs and top masses from vacuum stability:

Assuming a precise determination of m_h by ATLAS & CMS in a short time, the main uncertainty will remain the top mass. Note also that the m_t measured by Tevatron is not really the pole mass (possible larger error... Alekhin, Djouadi, Moch '12, Hoang & Stewart, '07-'08).
With the NNLO calculation we are able to derive a very precise relation between Higgs and top masses from vacuum stability:

A linear collider would be the ideal machine to bring down this uncertainty, determining more precisely the fate of the SM vacuum *(if in the meanwhile we have not found anything else...!)*
Looking at the plane from a more distant perspective, it appears more clearly that “we live” in a quite “peculiar” region...

And moving m_t down by ~ 2 GeV, we reach the even more peculiar configuration where $\lambda(M_{\text{pl}})=0$

Froggatt, Nielsen, Takanishi, '01
Arkani-Hamed et al., '08
Shaposhnikov, Wetterich, '10
...
Speculations on Planck-scale dynamics

What's special about $\lambda(M_{\text{pl}})=0$?
Despite also the beta function vanishes, is not a true fixed point (other coupl. $\neq 0$). Maybe more interesting the overall smallness of λ compared to the other couplings.
Speculations on Planck-scale dynamics

What's special about \(\lambda(M_{\text{pl}}) = 0 \)? Despite also the beta function vanishes, is not a true fixed point (other coupl. \(\neq 0 \)). Maybe more interesting the overall smallness of \(\lambda \) compared to the other couplings. At a scale \(\Lambda \gtrsim 10^8 \text{ GeV} \) \(\lambda \) becomes of the same order of its typical e.w. quantum corrections: *hints of a radiatively generated coupling*?

[Diagram showing \(\lambda \), \(g_1 \), \(g_2 \), and \(y_t \) vs. RGE scale in GeV.]
Speculations on Planck-scale dynamics

The smallness of λ certainly fits well with the possibility of a high-scale matching with a weakly coupled theory.

Giudice & Strumia '11-'12

Graph showing the relationship between Higgs mass and supersymmetry breaking scale with different values of $\tan\beta$.
Speculations on Planck-scale dynamics

Probably the most attractive feature of having $\lambda=0$ close to M_{pl} (assuming no new physics below such scale) is the possibility that the Higgs field has played some role in the early Universe, during inflation.

Bezrukov & Shaposhnikov, '08
Notari & Masina '11-'12

Bennett, Nielsen,Picek, '88
Froggatt, Nielsen, '96
G.I., Rychkov, Strumia, Tetradis '08
Speculations on Planck-scale dynamics

Probably the most attractive feature of having $\lambda=0$ close to M_{pl} (assuming no new physics below such scale) is the possibility that the Higgs field has played some role in the early Universe, during inflation.

The minimal set-up (SM only) does not work (field trapped into the new minimum or too large fluctuations)

But the problem can be solved with non-minimal couplings of the Higgs field to gravity and/or to other fields

Bezrukov & Shaposhnikov, '08
Notari & Masina '11-'12

The minimality of the scheme is lost, but it remains an intriguing possibility.
Two final remarks about the instability of the SM potential:

I. What about the instability because of thermal fluctuations?

II. What about adding to the model heavy right-handed neutrinos?
Two final remarks about the instability of the SM potential:

I. What about the instability because of thermal fluctuations?

Since the instability occurs at very high energies, thermal corrections do not play a significant role in destabilizing the potential.

II. What about adding to the model heavy right-handed neutrinos?

On general ground, adding new fermions may induce a further destabilization of the potential. However, the effect depend on the size of the new Yukawa couplings:

\[m_\nu \sim Y_n^T \frac{v^2}{M_R} Y_n \]

Requiring a sufficiently stable Higgs potential allow us to derive an upper bound on \(M_R \).
\[m_\nu \sim Y_n^T \frac{v^2}{M_R} Y_n \]

Still enough room for leptogenesis to take place.
Conclusions

- A SM-like Higgs with $m_h \sim 125$ GeV does not allow us to derive model-independent conclusions about the scale of New Physics: the Higgs potential is most likely unstable, but the e.w. vacuum is certainly sufficiently long-lived.
Conclusions

- A SM-like Higgs with \(m_h \sim 125 \text{ GeV} \) does not allow us to derive model-independent conclusions about the scale of New Physics: the Higgs potential is most likely unstable, but the e.w. vacuum is certainly sufficiently long-lived.

- Clear indication about a small, or even vanishing, Higgs self-coupling at high energies: if the SM is only an effective theory, we have to match it into a model where the Higgs

 - is a weakly interacting particle, if the matching occurs close to the e.w. scale \([as indicated by naturalness]\)

 - may have no intrinsic self-coupling (trivial \(\lambda \phi^4 \)), if the matching occurs above \(\sim 10^8 \text{ GeV} \)

- More precise determinations of both \(m_h \& m_t \) would be very useful, especially in absence of other NP signals, to better investigate the structure of the Higgs potential at high energies.