Statistics for (LHC Higgs) Physics

Nicolas Berger (LAPP Annecy)

Disclaimer

- This will not be a general statistics course:
 - I will deal mostly with topics relevant to Higgs searches at LHC (already a big task)
 - Most of the concepts will be introduced in the context of these searches, rather than in full generality
 - I won't be talking about Bayesian methods.
 The focus will be entirely on likelihood-based frequentist techniques.
- Focus on $H \rightarrow \gamma \gamma$ to introduce concepts, then generalize.

Outline

What are the goals ?

Setting up the problem : Maximum likelihood and Likelihood ratios

Discovery

Additional wrinkles (NPs, categories)

Limit setting

Further topics

The starting point

Statistical treatment starts when the analysis is already 99% done:

 \rightarrow We have identified variables which are useful for our search : for Higgs analysis: mass (or $m_{_T}$) spectra

 \rightarrow We have already taken the data \rightarrow We have already processed the data and reconstructed the quantities of interest

However still need to quantify observations:

 \rightarrow maybe we an see peaks by eye (or not)

 \rightarrow need to understand chances that this comes from a real signal.

The challenge: what we want

p₀ (**p-value**) : if there is no Higgs, probability to still get a fluctuation at least as large as this one.

Outline

What are the goals ?

Setting up the problem : Maximum likelihood and Likelihood ratios

Discovery

Additional wrinkles (categories, LEE)

Limit setting

Further topics

How to describe it

In general use $P(m; \theta)$

 \rightarrow **m** = measurements (observables): random variables

 $\rightarrow \theta$ = parameters, with fixed (but often unknown!) values

Measurements can be

 \rightarrow Discrete observables : e.g. Event counts $\Sigma_i P(m_i; \theta) = 1$

 \rightarrow Continous observables : (e.g. m_y)

=> probability **density** function, $\int P(m; \theta) dm = 1$

Likelihood

Defined simply as

$L(\theta; \mathbf{m}_{obs}) = P(\mathbf{m}_{obs}; \theta)$

Where L is now a function of θ with the **measured** m_{obs} as parameter

The meaning is different: \rightarrow P : **probability** to observe m **for a given** θ (useful e.g. For MC generation) \rightarrow L : **likelihood** of θ **given that m_{obs} has been observed** sets up the problem of determining θ .

...But the information content is exactly the same.

Defining the correct likelihood is the hard part! The rest is just turning the crank.

Common likelihood definitions

Method	Observable	Likelihood	
Cut-and- count	n : measured number of events	Poisson $L(n;s,b) = e^{-(s+b)} \frac{(s+b)^n}{n!}$	
		b : expected background	
Binned	n , i=1N _{bins} : measured events in each bin.	Multi-Dimensional Poisson	
shape analysis		$L(n; s, f_i, b_i) = \prod_{i=1}^{N_{bins}} e^{-(sf_i + b_i)} \frac{(sf_i + b_i)^{n_i}}{n_i!}$	
		f, : fraction of signal in each bin	
		b _i : expected background in each bin	
Unbinned	m _i , i=1N _{events} : observable value for each event	Extended Likelihood	
shape analysis		$L(m_i; s, b) = e^{-(s+b)} \prod_{i=1}^{N_{events}} sP_s(m_i) + bP_B(m_i)$	
		P_{s} , P_{B} : PDFs for x in signal and	
		backaround 10	

The (unbinned) likelihood for $H \rightarrow \gamma \gamma$

Maximum likelihood

Idea: estimate θ by picking the **most likely** value, where L is maximal

Maximum likelihood (ML) estimates denoted by "hat" : $\hat{\theta}$

Good properties:

→ Asymptotically Efficient: Maximum information (=> smallest

error) for large N

 \rightarrow Asymptotically Gaussian for large N

 \rightarrow **Unbiased** : correct on average even for small N.

$H \rightarrow \gamma \gamma$ -inspired example

Simple template fit using fixed shapes for signal and background Free parameters: N_{bkg} and $\mu = N_{signal} / N_{signal}^{SM}$

"Blue band" plots

Same principle for the "Blue band" plots:

 \rightarrow Scan over $m_{_{H}}$ values

 \rightarrow For each $m_{_{\!H}}\text{,}$ find $\widehat{\mu}$ and its error

Done for each channel and combination (details later)

Outline

What are the goals ?

Setting up the problem : Maximum likelihood and Likelihood ratios

Discovery

Additional wrinkles (categories, LEE)

Limit setting

Further topics

Hypothesis testing

Hypothesis = a region of parameter space. We will use: "SM without Higgs" : $\mu = 0$ Define:

 \rightarrow A "null" hypothesis H₀ to reject (here µ=0)

 \rightarrow An alternate hypothesis H₁ (\exists Higgs)

Strategy:

 \rightarrow Define some function q of the observables

 \rightarrow Find the distributions for H₀ and H₁

 \rightarrow See where is the value q_{obs} from the data

Two ways to make a mistake:

Type I :

- \rightarrow q_{obs} is H₁-like (Higgs?), but actually H₀ was true (no Higgs)
- => wrongly claim a discovery (bad!).
- \rightarrow Probability is the **p-value**. For a discovery, need <2.9E-7 **Type II:**
- $\rightarrow q_{obs}$ is H₀-like but H₁ was true

 \rightarrow Leads to missed discovery: less bad, but still to be avoided! Probability is 1-power.

Goal: find q with **max power** for a given p-value (=> max separation)

Neyman-Pearson lemma

Define q from likelihoods: \rightarrow Compute L(data; H₁) = L(data; θ (H₁)) for H₁ \rightarrow Compute L(data; H₀) = L(data; θ (H₀)) for H₀

Then $\lambda = L(data; H_1)/L(data; H_0)$ obviously carries information on the hypothesis test: \rightarrow If data is H_0-like, L(data; H_0) is large, L(data; H_1) small => small λ \rightarrow If data is H_1-like, L(data; H_1) is large, L(data; H_0) small => large λ

Neyman-Pearson lemma:

Use λ >A as the test. This is actually **optimal** (carries the maximum available information)

In practice use:

 $q = -2 \log(L(data; H_0)/L(data; H_1))$

Simple Gaussian Example

Profile-likelihood Statistic

Setup of previous example sometimes called "**Tevatron**style": 2 "simple" (single μ value) hypos.

At LHC usually use a different definition: $H_0 : \mu = 0, H_1 : \mu > 0$. Why ?more general definition of discovery: clearly $\mu = 2$ still counts.

Now H_1 is **composite** (range of μ values). What μ to use for L(data; H_1)? => The one that maximizes the likelihood ("give H_1 its best shot")

Use: $q_0 = -2 \log L(data; \mu=0)/L(data; \hat{\mu})$

Closely related to $\hat{\mu}$: \rightarrow Small $\hat{\mu}$ (no signal seen) => L($\hat{\mu}$) ~ L(μ =0) => small q_0 \rightarrow Large $\hat{\mu}$ (signal!) => L($\hat{\mu}$) >> L(μ =0) => large q_0

→ \mathbf{q}_0 > 0 since best-fit L always larger than fixed L(µ=0). → For simple Gaussian case, $\mathbf{q}_0 = (\hat{\mu}/s)^2$. → For a one-sided test (µ>0), still optimal although H₁ is composite

Distributions for q₀

Asymptotically, q_0 is distributed as:

 $\rightarrow \mu = 0$: a $\chi_2(n_{dof}=1)$ distribution $\rightarrow \mu \neq 0$: non-central $\chi_2(n_{dof}=1, \lambda), \ \lambda = \mu/\sigma$ This is **Wilks' theorem**

=> Can easily convert a q₀ value to a pvalue: $p_0 = \int_{q_0}^{+\infty} \chi^2(q, n_{dof} = 1) dq$

The key property for this is that $\hat{\mu}$ is Gaussiandistributed (σ = Gaussian width)

If this is not true (small stats, LEE issues), need to determine distribution "by hand": \rightarrow Generate toys (pseudo-data) for some μ . \rightarrow For each pseudo-dataset, compute q_0 and histogram the results \rightarrow May need many toys to populate the tails! $(5\sigma \rightarrow 2.9 \ 10^{-7} !)$

One-sided or Two-sided ?

$$q_0 = -2\log \frac{L(\mu = 0; data)}{L(\hat{\mu}; data)}$$

As defined, we have $\rightarrow \hat{\mu} \sim 0 \Rightarrow \text{small } q_0$ $\rightarrow \text{Large } \hat{\mu} > 0 \Rightarrow \text{large } q_0$

But also

→ "Very negative"
$$\hat{\mu} < 0$$

=> also large q₀

However we know these cases are not evidence for signal!

Since we also compute $\widehat{\mu}$, use this extra information to improve the procedure

Uncapped q

Uncapped p0:

If $\hat{\mu} < 0$, give q_0 a negative sign:

$$q_{0} = \begin{cases} -2\log\frac{L(\mu=0;data)}{L(\hat{\mu};data)} & \hat{\mu} \ge 0\\ +2\log\frac{L(\mu=0;data)}{L(\hat{\mu};data)} & \hat{\mu} < 0 \end{cases}$$

Distribution: "double half- $\chi 2''$

 \rightarrow For $\hat{\mu}$ >0, p-values are half those of the twosided case: (adding more information gives a better result).

 $\rightarrow p_0 < 0.5$ For $\hat{\mu} > 0$,

 $\rightarrow 0.5 < p_{_0} < 1$ for $\widehat{\mu} < 0$

Capped p₀: same but set q₀=0 for all $\hat{\mu} < 0$ \rightarrow Simpler, but negative fluctuations not shown \rightarrow Used in Higgs results before Summer 2012

Nuisance parameters

Good cases: parameter can be reliably estimated from the data: "profiling" Compute q_0 using the ML estimates of θ within the hypothesis:

$$q_{0} = -2\log \frac{L(data; \mu = 0, \hat{\theta})}{L(data; \hat{\mu}, \hat{\theta})} \xrightarrow{\text{Best-fit of } \theta \text{ in } H_{0} (\mu = 0 \text{ fixed})}{\text{Best-fit of } \theta \text{ in } H_{1} (\mu \text{ floating})}$$

Wilks' theorem: this q_0 still asymptotically distributed as a $\chi^2(n_{dof}=1)$!

Note: this isn't exactly new...

Now consider the likelihood ratio

Intuitively, l is a reasonable test statistic for H_0 : it is the maximum likelihood under H_0 as a fraction of its largest possible value, and large values of l signify that H_0 is reasonably acceptable. The critical region for the test statistic is therefore

 $l = \frac{L(x \mid \theta_{r0}, \hat{\theta}_s)}{L(x \mid \hat{\theta}_r, \hat{\theta}_r)}.$

$$l \leq c_{\alpha},$$
 (24.6)

where c_{α} is determined from the distribution g(l) of l to give a size- α test, i.e.

$$\int_{0}^{c_{\alpha}} g(l) dl = \alpha.$$
 (24.7)

Kendall and Stuart, The Advanced Theory of Statistics,

vol. 2 (**1961**)

(24.4)

Inclusive $H \rightarrow \gamma \gamma$

Scan over**110 < m_H < 150 GeV**

For each value compute q_0 using \rightarrow The signal template for this m_H \rightarrow A free 4th-order polynomial shape for the background \rightarrow also add systematics, but little effect here

Convert q₀ to p-value using the asymptotic distribution

Expected p₀

- \rightarrow Generate toys (usually for $\mu {=} 0)$
- \rightarrow Compute p₀, histogram results
- \rightarrow Report median of distribution

 $(\Phi = Gaussian cumulative distribution)$

Outline

What are the goals ?

Setting up the problem : Maximum likelihood and Likelihood ratios

Discovery

Additional wrinkles (categories, LEE)

Limit setting

Further topics

Look-elsewhere effect

Search for a particle with unknown mass: \rightarrow Scan p₀ as a function of mass, find minimum \rightarrow Better: include mass in the statistic: $L(u=0, \hat{m}, data)$

 $q_0 = -2\log \frac{L(\mu = 0, \hat{m_H}; data)}{L(\hat{\mu}, \hat{m_H}; data)}$

Wilks' theorem: should be $\chi^2(n_{dof}=2)$?

No: finding a fluctuation at **any** mass is much more likely than finding one at a **given** mass. $\mathbf{p}_0^{\text{float}} = \mathbf{p}_0^{\text{fix}} \mathbf{X} \mathbf{N}$

N the "trials factor" = number of independent regions in mass range, ~ $(m_{H,max}-m_{H,min})/(2\sigma_{peak})$

As the search interval increases, probability to find fluctuations of arbitrary size becomes large

Technically, the problem is that μ plays a role only in the μ >0 hypothesis; for μ =0, μ is irrelevant => Wilks' theorem not valid.

ts / GeV

Look-elsewhere effect (2)

Solution: get distribution of floating-mass q_0 from toys – expensive in CPU for 5σ .. \rightarrow Another approach: note that

 $p(q_0 > X \text{ in } (m_{H,min,} m_{H,max})) = p(q0 > X @ m_{H,min}) + p(q0 < X @ m_{H,min}) p(q_0 \text{ crosses > X})$ (To be >X somewhere, you either start >X or you cross into it at some point)

 \rightarrow For large X, p(upcrossing above X) ~ $\langle N_{c}(X) \rangle$, the average # of upcrossings,

 $p(q_0 > X \text{ with floating mass}) = p(q_0 > X \text{ at fixed mass}) + \langle N_c(X) \rangle$

Interesting since $\langle N_c(X) \rangle$ has known dependence on X (for large enough X) : $\langle N_c(X) \rangle \sim e^{-X/2}$.

So we can use toys to compute $\langle N_c(X) \rangle$ for small values of X (which is cheap), then extrapolate to 5σ

E. Gross and O. Vitells, Eur. Phys. J. C70 (2010) 525–530 R. B. Davies, Biometrika 74 no. 1, (1987) 33–43

Categories

 \rightarrow Dataset contains "good" regions: Higher S/B, better resolution, etc.

There is a tradeoff: →Select good regions only: gain on performance, lose on statistics (fewer events) → Select everything: more events, but good regions get diluted.

Categories : split dataset into subsets. For instance "good region" and "the rest" \rightarrow **Each subset modeled separately**, so can take advantage of better regions

→ Fits are done simultaneously, so some parameters can be common (μ , m_{H}) → Fitted values are automatically "combined" across categories.

Technically

$$L = \prod_{i=1}^{N_{cat}} L_i(\mu, \theta; data_i)$$

Categories: purity example

Categories: resolution example

H→yy Category results

Binned ML

So far we have discussed the unbinned case, with parametrized PDFs, e.g. $L(m_{\gamma\gamma,1}..m_{\gamma\gamma,N_{obs}};\mu) = e^{-(\mu N_s^{SM} + N_b)} \prod_{i=1}^{N_{obs}} \mu N_s^{SM} P_s(m_{\gamma\gamma,i}) + N_b P_b(m_{\gamma\gamma,i})$

Another common approach is the binned likelihood, based on histograms:

 \rightarrow Define a binning in the variable(s) of interest, say $m_{_{i}},$ i=1..N_{_{bins}}

 \rightarrow The model gives the bin contents, for instance:

 $\mathsf{N}_{\mathsf{model},\mathsf{i}} = \mu \mathsf{N}_{\mathsf{s},\mathsf{i}}(\theta) + \mathsf{N}_{\mathsf{b},\mathsf{i}}(\theta)$

 \rightarrow The per-bin likelihood just describes Poisson fluctuations around these values

$$P(N_{data,i};\mu,\theta) = e^{-N_{model,i}(\theta)} \frac{N_{model,i}(\theta)^{N_{data,i}}}{N_{data,i}!}$$

And the full likelihood is

$$L(N_{data,1}..N_{data,N_{bins}};\mu,\theta) = \prod_{i=1}^{N_{bins}} P(N_{data,i};\mu,\theta) \propto e^{-(\mu N_s^{SM}+N_b)} \prod_{i=1}^{N_{bins}} N_{model,i}(\theta)^{N_{data,i}}$$

Binned vs. Unbinned

Binned

Unbinned

Not dependent on binning (!)

Can use histogram templates directly Need to fit templates to an analytic shape, include modeling error

Usually faster ($N_{bins} < N_{events}$)

Sensitive to statistical fluctuations of
templatesFits to analytic shape usually removes
effect of fluctuations

Which one to use: it depends! \rightarrow Do we have high-statistics templates ? \rightarrow Is there a convenient/simple analytic shape to use ?

<u>Results : 2012 H→WW→lvlv</u>

Combination

To combine channels together: just use categories

- → Each channel is one category (or several)
- \rightarrow Share parameters:
- \rightarrow Common physics parameters (μ , m_H...)

 \rightarrow Common systematics

Global Higgs model: **78** categories in all, each separately parametrized

Below: part of 1 category (of 20) of the $H \rightarrow \gamma \gamma$ component of the combined model (each node is a parameter or a PDF)

Interlude: why didn't we need this before ?

More examples

OB:20 SON OF GLORY Churche Mondenn, Allen Little, Bob Stege Jo it of

NOTES THE RESCAN (RUN 1922) AN SHELLED AN "1975" OBRINED BY RUNNING SOMM NOOM 1.985, SO EUDERING (DAL'S DOM'T CARLINGHT D TO MELL AT RUN 1922

15 GOP DUMP | Rake

WIB Presite on at 1.217 .

Mus has compared provides so into parts in h

Thehen.

1 Nav 1971

30 DAMN - LIDAL RACK UP, DUMP - Dig

 ψ' : discovered online by the (lucky) shifters, similar story to ψ ...

First hints of top at D0: O(10) signal events, a few background events, 0.78% p-value

Why we need this now

 \rightarrow The high-signal, low-background experiments have been done already (but a surprise at 5 TeV would be welcome...)

At LHC:

 \rightarrow High background levels, need precise modeling

 \rightarrow Large systematics, need to be treated correctly

 \rightarrow Small signals: need optimal use of available information :

 \rightarrow shape analyses instead of counting

 \rightarrow Isolation of signal-enriched regions (categories)

Outline

What are the goals ?

Setting up the problem : Maximum likelihood and Likelihood ratios

Discovery

Additional wrinkles (categories, LEE)

Limit setting

Further topics

Limits ?

Do we still need them ? Yes, need to find out if there are other bosons out there!

"Set upper limit on μ " = Try to exclude the μ S+B hypothesis for μ above some value. Similar situation to discovery, can reuse the same tools.

Statistic for limit-setting

Following our usual procedure, use $q_{\mu} = -2 \log L(\text{data}; \mu)/L(\text{data}; \hat{\mu})$ to exclude the μ S+B hypothesis. $\rightarrow \text{If } \mu < \langle \hat{\mu}, \text{this is large (bad agreement, good exclusion)}$ $\rightarrow \text{If } \mu \sim \hat{\mu}, \text{this is small (good agreement, bad exclusion)}$

Problem: if $\hat{\mu}$ >> μ , large as well. But too-large $\hat{\mu}$ shouldn't give good upper limit! => again, use a one sided version

$$\tilde{q}_{\mu} = \begin{cases} -2\log\frac{L(\mu; data)}{L(\hat{\mu}; data)} & 0 < \hat{\mu} < \mu \\ 0 & \hat{\mu} \ge \mu \\ -2\log\frac{L(\mu; data)}{L(\mu=0; data)} & \hat{\mu} < 0 \end{cases}$$
Also separate $\hat{\mu} < 0$ for "technical" reasons: fits can be unstable. In this case, use the value of q for $\mu=0$

Again, Wilks' theorem gives the distribution (need to measure one parameter (σ) separately...)

$$f(\tilde{q}_{\mu}|\mu) = \frac{1}{2}\delta(\tilde{q}_{\mu}) + \begin{cases} \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{\tilde{q}_{\mu}}}e^{-\tilde{q}_{\mu}/2} & 0 < \tilde{q}_{\mu} \le \mu^{2}/\sigma^{2} \\ \frac{1}{\sqrt{2\pi}(2\mu/\sigma)}\exp\left[-\frac{1}{2}\frac{(\tilde{q}_{\mu}+\mu^{2}/\sigma^{2})^{2}}{(2\mu/\sigma)^{2}}\right] & \tilde{q}_{\mu} > \mu^{2}/\sigma^{2} \end{cases},$$

The inversion problem

For each μ , we can compute the $q_{\mu,obs}$ of our data and the p-value.

However what is usually needed is instead the value of μ which yields a given p-value, usually p=0.05 (95% exclusion) => need to solve for μ

Inversion in practice

In practice, inversion procedure done as follows:

 \rightarrow Define a set of values to scan (here 0-12 with varying step sizes)

 \rightarrow Compute p_{s+b} for each value, find crossing with 95%

→ Expected: Generate toys (usually for μ =1) and histogram values of μ_{95} . Report median and +/- 1,2 σ quantiles.

<u>Asimov datasets</u>

Cases when toys are needed: \rightarrow Compute expected p₀, upper limits \rightarrow Compute σ parameter of q_µ asymptotic distribution

$$f(\tilde{q}_{\mu}|\mu) = \frac{1}{2}\delta(\tilde{q}_{\mu}) + \begin{cases} \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{\tilde{q}_{\mu}}}e^{-\tilde{q}_{\mu}/2} & 0 < \tilde{q}_{\mu} \le \mu^{2}/\sigma^{2} \\ \\ \frac{1}{\sqrt{2\pi}(2\mu/\sigma)}\exp\left[-\frac{1}{2}\frac{(\tilde{q}_{\mu}+\mu^{2}/\sigma^{2})^{2}}{(2\mu/\sigma)^{2}}\right] & \tilde{q}_{\mu} > \mu^{2}/\sigma^{2} . \end{cases}$$

In both cases, goal is to determine a quantity in a given μ scenario. Need to run toys to average over statistical fluctuations.

Another approach: **Asimov dataset** = "perfect" dataset with no statistical fluctuations. (technically such that ML estimate of all parameters are equal to predefined values)

=> Get quantities from a single determination For limit quantiles, get bands from value of σ

Systematics

Choice of constraints

Ideally, choice driven by properties of the auxiliary measurement.

In practice, often use **Gaussians**: \rightarrow Implement systematic effects as $X \rightarrow X(1 + \sigma\theta)$ where $\theta \sim G(0,1)$ \rightarrow Reasonable approximation to most cases \rightarrow Computationally efficient

Other choices

→ Bifurcated Gaussian: for asymmetric errors

 \rightarrow Log-normal: for corrections on positive numbers (normalizations).

$$f(\theta; \theta_{0,\kappa}) = \frac{1}{\theta \sqrt{2\pi} \log \kappa} \exp \left[\frac{-1}{2} \left(\frac{\log(\theta/\theta_{0})}{\log \kappa}\right)^{2}\right]$$

Represents a multiplicative uncertainty. e.g. κ =1.50 represents an errors by x/÷ 1.50 Can implement as **X**→ **X** exp($\sigma\theta$) with θ ~G(0,1)

Systematics example

Use again the toy $H{\rightarrow}\gamma\gamma$ setup with fixed templates, just μ as free parameter

Look at m_H=120 GeV, μ =4 hypothesis Best-fit is $\hat{\mu}$ =0.85 (<<4), q₄ = 3.14 => p_{s+b}= 4% μ =4 excluded at 95% CL

$$\tilde{q_4} = -2\log \frac{L(\mu=4; data)}{L(\hat{\mu}; data)}$$

Now add a systematic on efficiency, say $\varepsilon = \varepsilon_0(1 + \sigma_{\delta\varepsilon} \delta\varepsilon)$ and Gaussian constraint on $\delta\varepsilon$ For dramatic effect, use $\sigma_{\delta\varepsilon} = 30\%$

$$L_{S}(\mu, \delta\varepsilon; data) = L(\mu \exp(\sigma_{\delta\varepsilon} \delta\varepsilon); data) \exp\left[-\frac{\delta\varepsilon^{2}}{2}\right]$$

Again m_H=116 GeV, μ =4 hypothesis Best-fit $\hat{\mu}$ = 0.85 (<< 4) still, now q₄ = 2.17, p_{s+b}=7% \tilde{q}_4 =-2 log $\frac{L(\mu=4,\delta\hat{\hat{\epsilon}};data)}{L(\hat{\mu},\delta\hat{\epsilon};data)}$

In fit with fixed $\mu=4$, can now drag $\delta\epsilon$ down => fit $\delta\epsilon$ = -24.6%. Mitigates tension between fixed $\mu=4$ and best-fit $\hat{\mu}=0.85$ => $\mu=4$ not excluded

Systematic parameter gives more freedom for the fixed hypothesis, makes it easier to reconcile hypo with data =>decreases exclusion potential. 51

Sensitivity issues

So far, use $CL_{_{s+b}}$ limits asymptotically, $\mu_{_{95}} \sim \hat{\mu} + 1.64\sigma$

Problem:

for negative $\hat{\mu}$, get very good (too good) limits. For $\hat{\mu}$ sufficiently negative, can have limit < 0!

What is happening ? Remember this is a **95%** limit. In other words, **5% of the time, the limit wrongly excludes the true value**.

What can we do ? Live with it ? Move to 99% ? **Understand what happens and fix it**

A real-life example

Solution: CLs

Since we can identify these cases, try to correct for them to avoid spurious exclusion claims.

CL_s = p_{s+b} =power f f f f use CL_s = CL_{s+b}/CL_b to set the limits. For data compatible with bkg hypo, CL_b ~1 and nothing changes

if $CL_b << 1$, then $CL_s >> CL_{s+b}$ and prevents too-good limits.

CLs is frowned upon by some statisticians: Not well-motivated in theory A side effect is **overcoverage** (e.g. 95% CL is in fact 98%) but can't be avoided.

In HEP it is the de facto standard

Limit Results

Outline

What are the goals ?

Setting up the problem : Maximum likelihood and Likelihood ratios

Discovery

Additional wrinkles (categories, LEE)

Limit setting

Further topics

<u>Spin measurement</u>

What is the spin of "the boson"? Could be 0, could be 2. Less likely 3+.

Strategy:

Simple hypotheses, so LLR is optimal. Use e.g.

 $q = -2 \log L(spin 2; data)/L(spin 0; data).$

Of course L should now include spinsensitive information (decay angles, etc.) to have discrimination.

No results yet...

Mass measurement

Can leave mass free when fitting for μ : \rightarrow Define a 2D version of the profile likelihood: $\lambda(\mu, m_H) = -2\log \frac{L(\mu, m_H)}{L(\hat{\mu}, \hat{m_H})}$ \rightarrow Wilks' theorem: I distributed as $\chi^2(n_{dof}=2)$

 $\rm m_{\rm H}$ only

 \rightarrow However error on $m_{_H}$

depends on μ , so a bit sensitive to chosen value of μ

Couplings measurement

Idea: consider separately Higgs production modes: ggH, VBF, WH, ZH, ttH

Different contributions to categories:

 \rightarrow 2-jet category is enriched in VBF production

 \rightarrow High-pT categories enriched in VBF, VH

=> Can "solve" for separate productions

 $H \rightarrow \gamma \gamma$ category breakdown at 8 TeV

category	ggH	VBF	WH+ZH
low-pTt	93%	4%	3%
high-pTt	66%	16%	16%
2-jets	~30%	~70%	

Technically:

Instead of a single μ , allow 2 separate μ : $\rightarrow \mu_t$ which scales the numbers of ggH and ttH $\rightarrow \mu_v$ which scales VBF, WH and ZH Define a profile-likelihood statistic to test (μ_t , μ_v) hypotheses \rightarrow By Wilks' theorem, distributed as a $\chi^2(n_{dof}=2)$

$$\lambda(\boldsymbol{\mu}_{t},\boldsymbol{\mu}_{V}) = -2\log\frac{L(\boldsymbol{\mu}_{t},\boldsymbol{\mu}_{V})}{L(\hat{\boldsymbol{\mu}_{t}},\hat{\boldsymbol{\mu}_{t}})}$$

Coupling measurement (2)

Coupling measurements (3)

 μ not directly linked to couplings, since Couplings also affect H decay rates Better parametrization: define

 \mathbf{x}_{F}

- $\rightarrow \kappa_{_{\! F}}$: correction to Higgs fermion couplings
- $\rightarrow \kappa_v$: correction to Higgs vector boson couplings

 \rightarrow SM : $\kappa_{\rm F} = \kappa_{\rm V} = 1$

ATLAS-CONF-2012-127

Express μ_t , μ_v as functions of κ_F , κ_v , including both production and decay.Use

$$\lambda(\kappa_F,\kappa_V) = -2\log \frac{L(\kappa_F,\kappa_V)}{L(\hat{\kappa_F},\hat{\kappa_V})}$$

Since validity of Wilks' theorem not checked here, show λ values not CL:

$$\int_{0}^{2.3} \chi^2(\Lambda; ndof = 2) d\Lambda \approx 0.68$$
$$\int_{0}^{0} \chi^2(\Lambda; ndof = 2) d\Lambda \approx 0.95$$

 \rightarrow The last few years have seen significant developments in statistical methods used in HEP

Moving towards:

 \rightarrow Standard methods that are well-suited to many HEP situations.

 \rightarrow Standard tools, e.g. RooFit, RooStats, distributed with ROOT.

Hopefully to be used for many discoveries to come!

Further reading

F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006;

G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.

R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989;

L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.

See also this lecture series by G. Cowan: https://indico.cern.ch/conferenceDisplay.py?confld=173726