W & Z Signals

ATLAS

1

2010 data

W & Z Cross Sections

Top Quark Pair Production at the LHC

Producing Top Pairs

LHC (7 TeV)

Tevatron (1.96 TeV)

gluon fusion

80% of the cross-section

in a ¹S₀ state, not so close from threshold anti-parallel spins, not 100% correlated

quark annihilation

85% of the cross-section

near threshold in a ³S₁ state parallel spins, 100% correlation

Top Pair Decay Channels

Top Pair Event Classification

b-jet

MET

b-iet

Dilepton

- 2 isolated oppositely-charged leptons (e or μ), 2 b-jets, large E_T^{miss}
- three channels: ee, μμ, eμ
- BR=4.7% (1+1+2)
- few backgrounds, mainly Z+jets

Lepton+Jets

- 1 isolated lepton (e or μ), 2 b-jets, 2 light-quark jets, some E_T^{miss}
- two channels: e+jets, μ+jets
- **BR=29.2**% (1+1)
- moderate backgrounds, mainly W+jets
- at the LHC, W+jets production is charge-asymmetric

All Hadronic

- no lepton, 2 b-jets, 4 light-quark jets, no E_T^{miss}
- **BR=45.7**%
- huge QCD-multijet background

Hadronic Tau

- two channels: τ+e/μ, τ+jets
- BR=4.7%+14.6%

dilepton and lepton+jets channels usually include contributions of e and μ from $\tau\text{-lepton}$ decays

Top Cross Section at Tevatron

Top pair production cross section in proton-antiproton collisions at \sqrt{s} = 1.96 TeV

Consistency among various channels

mains systematic uncertainties: Jet Energy Scale (JES), b-tagging, W+jets modeling

Consistency between experiments

Good agreement with SM predictions

Top Cross Section at the LHC

Dilepton

ATLAS: Dilepton

Standard selection

- 2 oppositely-charged leptons (e or μ)
- p_T > 25 (20) GeV for e (μ)
- at least 2 jets with $p_T > 25 \text{ GeV}$

In ee and $\mu\mu$ channels

- Y veto: M(II) > 15 GeV
- Z veto: | M(II) m_Z | > 10 GeV
- $E_T^{miss} > 60 \text{ GeV}$

In eµ channel

♦ H_T > 130 GeV

Selection with b-tagging

- working point: 80% b-tagging efficiency
- $\bullet \geq 1$ b-tagged jet
- $E_T^{miss} > 40 \text{ GeV}$

Backgrounds

- data-driven estimation of fake-lepton and DY
- diboson and single-top from simulation + (N)NLO theory

JHEP 1205 (2012) 059

very pure samples of top pair events

ATLAS LHC@/s=7 TeV (2011)

∫Ldt = 0.7 fb⁻¹

H_T is defined as the scalar sum of the transverse energies of the two leptons and all selected jets

ATLAS: Dilepton

Signal extraction

- profile likelihood in individual channels
- 1920 (1400) signal events without (with) b-tagging

ATLAS LHC@√s=7 TeV (2011) ∫Ldt = 0.7 fb⁻¹

Main systematic uncertainties

- ♦ JES, E_T^{miss}, fake-leptons
- signal modeling

Combination of channels

 $\sigma_{t\overline{t}}(\text{ATLAS-dilepton}, 7 \text{ TeV}) = 176 \pm 5 \text{ (stat)}^{+14}_{-11} \text{ (syst)} \pm 8 \text{ (lumi) pb}$ (9%)

The Golden Mode: Lepton+Jets

- High rate: 30% of top pairs
- Low backgrounds
 S/B > 1
- W reconstructed in the hadronic channel: in-situ constraint on the jet energy scale (JES)

But:

- Very high jet combinatory: importance of
 - efficient b-jet tagging and
 - excellent di-jet resolution

Lepton+jets

Selection

- exactly 1 isolated lepton (e or μ)
- p_T > 45 (35) GeV for e (μ)
- consider jets with p_T > 30 GeV
- \geq 1 jet(s) b-tagged (SV algorithm, WP: ϵ ~55%, mistag~1.5%)
- $E_T^{miss} > 30$ (20) GeV in e (µ) channel

Signal extraction

- profile likelihood fit to N_{jets}, N_{b-jets} and secondary vertex mass
- determine simultaneously
 Signal, W+light-jet and W+heavy-jet
- templates from simulation (except QCD)
- onuisance parameters:

b-tagging efficiency, light-jet mis-tagging, JES, W+jets factorization scale

Main systematic uncertainties

JES, b-tagging efficiency, W+jets modeling

$\sigma_{t\bar{t}}$ (CMS-lepton+jets, 7 TeV) = 164.4 ± 2.8 (stat) ± 11.9 (syst) ± 7.4 (lumi) pb (8.7%)

CMS LHC@√s=7 TeV (2011) ∫Ldt = 0.8-1.1 fb⁻¹

CMS-TOP-11-003

14

CMS: Cross Sections at 8 TeV

ATLAS: Cross Sections at 7 TeV

ATLAS-CONF-2012-024

CMS: Cross Sections at 7 & 8 TeV

$\sigma(8TeV)/\sigma(7TeV) = 1.41 \pm 0.11$

Top Constraints on PDFs

Top quark pair production cross section measurements at LHC are already at a level that allows some discrimination between NLO/NNLO predictions with various PDF sets

expect ultimate resolution on cross section around 5%

Spin Correlations

Top quark pair production property

Near threshold

- quark annihilation: parallel spins, opposite helicities
- gluon fusion: antiparallel spins, same helicities

Far from threshold

angular momentum plays a role

Decay before hadronization

→ possibility of measuring the spin correlations from angular correlation of the decay products of the 2 top quarks

Spin analyzers from W-boson decay

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_i} = \frac{1}{2} \left(1 + \alpha_i \times \cos\theta_i \right)$$

Best spin analyzers

charged leptons and down-type quarks: α =1

(but difficult to distinguish down- from up-type quark jets)

Top guark spins are correlated

Dominant spin correlation at Tevatron

Spin correlations at the LHC (SM)

Dominar

spin correlation at LHC

First one needs to define the quantization axis...

Spin Correlations

Observable: Spin Correlation Coefficient

first, one needs to define the quantization axis...

Definitions of the spin analyzing vectors

Beam Basis:

bisector of the beams in the t-tbar CoM frame (Collins-Soper)

• Helicity Basis:

direction of flight of the top quark in the t-tbar CoM frame, defined such that the spin analyzing vectors have opposite sign

• LHC Maximal Basis:

a basis for which the correlation coefficient is maximal for top pairs produced by gluon fusion

$$\frac{1}{\sigma} \frac{\mathrm{d}^2 \sigma}{\mathrm{d} \cos \theta_1 \mathrm{d} \cos \theta_2} = \frac{1}{2} \left(1 + A \alpha_1 \alpha_2 \times \cos \theta_1 \cos \theta_2 \right)$$

Tevatron: evidence for non-vanishing t-tbar spin correlations (but statistically limited)

SM Predictions:

- A_{beam} = 0.78
 in the Beam Basis at the Tevatron
- A_{hel} = 0.31
 in the Helicity Basis at the LHC

A depends on the production mechanism of the top quark pair

ATLAS: Spin Correlations

ATLAS

LHC@√s=7 TeV (2011) ∫Ldt = 2.1 fb⁻¹

Strategy:

- use dilepton channel (standard selection)
- fit the difference in azimuthal angle between the two leptons Δφ
- template method
- no requirement on M(t-tbar)

Hypothesis testing

- H0: spin correlation from Standard Model
- H1: uncorrelated top quark spins

results inconsistent with zero spin-correlation hypothesis at the 5.1σ level

$$A_{\rm hel} = 0.40 \pm 0.04 \; (\text{stat})^{+0.08}_{-0.07} \; (\text{syst})$$

PRL 108, 212001 (2012)

in good agreement with SM predictions at parton level

CMS: Top Polarization

Measurement of top polarization in the Helicity Basis

- At LHC, top pairs are produced unpolarized from QCD a small net polarization from EWK corrections
- Top polarization: a new observable to distinguish between models proposed to explain the large charge asymmetry at the Tevatron

CMS LHC@√s=7 TeV (2011) ∫Ldt = 5 fb⁻¹

CMS-TOP-12-016

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_{\ell^+}} = \frac{1}{2} \left(1 + 2P_{\mathrm{top}} \times \cos\theta_{\ell^+} \right)$$

Quantization axis

 direction of the top quark in the t-tbar rest frame

> differential cross section as a function of the angle of the positively charged lepton with the quantization axis

 $P_{\rm top} = -0.009 \pm 0.029 \; (\text{stat}) \pm 0.041 \; (\text{syst})$

top polarization consistent with zero, as expected in SM

Test of V-A Coupling to W

Top quark decay property

W bosons from top decays are polarized:

- longitudinal (69.6%) ٠
- left-handed (30.3%) ٠

neutrino

b quark

almost no right-handed (~0.1%) ٠

f_ ≈ 30%

f₀ ≈ 70%

f_⊥ ≈ 0.1%

ATLAS: W Polarization

Lepton+jets and dilepton channels

Two methods:

- templates
- angular asymmetries

V-A top coupling to W is confirmed at LHC

 $f_0 = 0.67 \pm 0.03 \text{ (stat)} \pm 0.06 \text{ (syst)}$ $f_R = 0.01 \pm 0.01 \text{ (stat)} \pm 0.04 \text{ (syst)}$ $f_L = 0.32 \pm 0.02 \text{ (stat)} \pm 0.03 \text{ (syst)}$ CMS LHC@√s=7 TeV (2011) ∫Ldt = 1.04 fb⁻¹

CMS-TOP-12-016

Top Quark Mass

LHC Mass Combination

$m_{\rm top}(\text{LHC-combined}) = 173.3 \pm 0.5 \text{ (stat)} \pm 1.3 \text{ (syst)} \text{ GeV}$	(0.8%)
$m_{\rm top}$ (Tevatron-combined) = $173.2 \pm 0.6 ({\rm stat}) \pm 0.8 ({\rm syst}) {\rm GeV}$	(0.6%)

Methods to Measure the Mass

Template method

fit an observable with MC-generated distributions assuming different values of m_{top}

Ideogram method

event likelihood computed as the convolution of a resolution function with a distribution for the signal, plus wrong-pairing and backgrounds

Matrix Element method

build an event probability based on LO matrix element, using the full kinematics of the event

JES crucial for top quark measurements!

In channels with \geq 1 W decaying hadronically, use the invariant mass of light-quark jet pairs (constrained to the W mass) to calibrate the JES

Use **b-tagging** information to improve probability of choosing the correct jet combination in the reconstruction of the top-quark pair system

ATLAS: Lepton+Jets

Strategy

- simultaneous fitting using a global jet scaling factor (JSF)
- "in-situ" calibration of JES: correct light-jet energy back to parton level to agree with m_w
- 2D-template fit as a function of JSF and m_{top}

Selection: similar to cross section measurement

~3,400 e+jets and ~5,100 μ+jets signal events

JSF sensitive not only to JES but also to MC modeling (fragmentation, radiation)

ATLAS LHC@√s=7 TeV (2011) ∫Ldt = 1.0 fb⁻¹

Eur. Phys. J. C (2012) 72:2046

templates for the m_W^{reco} fit depend only on JSF

Kinematic χ^2 fit

- identify best light jet combination per event
- determine corresponding parton scales for jet energies
- keep j-j-b triplet with maximum p_T as top candidate
- rescale energies of jets used to compute m_{top}^{reco}

ATLAS: Lepton+Jets

Selection: similar to cross section measurement

- 1 lepton + E_T^{miss} + \ge 4 jets + \ge 2 b-tagged jet
- ~5,174 events selected (purity>90%)

Constrained kinematic fit

to reduce wrong matching probability

- two light-jets:
 constrain mass to m_w
- lepton and neutrino (MET) constrain mass to m_w
- two top candidates: constrained to equal masses

fraction of correct pairing: $13\% \rightarrow 44\%$

CMS

Fit probability > 20% (used to weight permutations)

Selection: similar to cross section measurement

- 1 lepton + E_T^{miss} + \ge 4 jets + \ge 2 b-tagged jet
- ~5,174 events selected (purity>90%)

Constrained kinematic fit

to reduce wrong matching probability

- two light-jets:
 constrain mass to m_w
- lepton and neutrino (MET) constrain mass to m_w
- two top candidates: constrained to equal masses

fraction of correct pairing: $13\% \rightarrow 44\%$

CMS

Fit probability > 20% (used to weight permutations)

Simultaneous determination of mass and JES with 2D-ideogram method

Per-event likelihood

- as a function of m_{top} and JES
- sum of probability densities: signal with correct jet assignment signal with wrong jet assignment background
- parameterized analytically (from simulation)

Main sources of systematic uncertainties

- color reconnection effects
- b-jet JES
- p_T and η dependent JES
- underlying event tune

method calibrated with pseudo-experiments

 $m_{\rm top}({\rm CMS-lepton+jets}) = 173.5 \pm 0.4 \; ({\rm stat+JES}) \pm 1.0 \; ({\rm syst}) \; {\rm GeV}$ (0.8%)

and: JES parameter = 0.994 ± 0.003 (stat) ± 0.008 (syst)

Also, check of CPT symmetry:

$$\Delta m_{\rm top} = -0.44 \pm 0.46 \; (\text{stat}) \pm 0.27 \; (\text{syst}) \; \text{GeV}$$

arXiv:1204.2807, subm. to JHEP

CMS: Dilepton

Selection: similar to cross section measurement

- 2 leptons + Z veto + E_T^{miss} + \ge 2 jets + 2 b-tagged jet
- 6,990 selected events (1,151 ee + 4,365 eµ + 1,474 μμ)

Analytical Matrix Weighting Technique (AMWT)

CMS

LHC@/s=7 TeV (2011)

CMS-TOP-11-016

∫Ldt = 5.0 fb⁻¹

- Underconstrained system:
- 24 (6x4) parameters, 14 measurements (4x3+2)
- constraints: masses of final states particles (6),
 W-boson mass (2), equal top-antitop masses (1)
 → one free parameter: the top quark mass
- For a given top mass (1 GeV steps from 100 to 400 geV) up to 8 solutions of the kinematic equations (analytical determination of the 2 neutrino E_T).
- A weight is assigned to each solution, which takes into account the PDFs and the probability of producing 2 leptons with the measured energy (LO Matrix Element)
- Vary all the experimental quantities within resolution
- Assign the mass with the maximum weight to the event
- Template fit of mass distribution (range 100-300 GeV)
- Main sources of systematic uncertainty: b-JES, scales, fit calibration (pseudo-exp.)

 $m_{\rm top}({\rm CMS-dilepton}) = 172.5 \pm 0.4 \ ({\rm stat}) \pm 1.5 \ ({\rm syst}) \ {\rm GeV}$ (0.9%)

most precise measurement in di-lepton mode to date

Top Mass from Cross Section

The definition of the top quark mass is ill-defined

- The mass measured at colliders, from the invariant mass of the top decay products (bW) is assumed to be close to m_{pole}
- problem: for a quark, m_{pole} cannot be determined experimentally with accuracy better than O(Λ_{QCD})
 - in the case of the top quark (decay before hadronization) the limitation is traced to extra radiation and color reconnection

The renormalized mass

- is a fully-perturbative quantity unambiguously defined within a renormalization scheme
 - for instance, the MSbar scheme
- is a running quantity according to RGE
 - it varies as a function of the renormalization scale
- is used in perturbative calculations of the cross section
- can be linked to m_{pole}
 - up to an uncertainty of O(Λ_{QCD}) of course...

Extract the top mass from a measurement of the inclusive cross section

- Compare the measured cross section with (N)NLO QCD prediction
- Exploit the $\Delta\sigma/\sigma$ = -A x Δ m/m to extract m

A~4, so a typical 10% uncertainty at 160 pb corresponds to a 4 GeV uncertainty on the mass

Top Mass from Cross Section

extract m_{top} using a joint likelihood:

- dependence of the measured cross section through acceptance

- dependence of the theory cross section

CMS measurements in the MSbar scheme:

Approx. NNLO × MSTW08NNLO	m_t^{pole} / GeV	$m_t^{\overline{\mathrm{MS}}}$ / GeV
Langenfeld et al. [7]	$170.3^{+7.3}_{-6.7}$	$163.1^{+6.8}_{-6.1}$
Kidonakis [8]	$170.0^{+7.6}_{-7.1}$	_
Ahrens et al. [9]	$167.6^{+7.6}_{-7.1}$	$159.8^{+7.3}_{-6.8}$

uncertainties are large, but important cross check of direct mass measurements

Electroweak Fit & W Mass

Goal at LHC? 5 MeV!

 $\Delta m_t = 0.9 \; {
m GeV} \;\; \leftrightarrow \;\; \Delta {
m m_W} pprox 5 \; {
m MeV}$

W-Boson Mass Measurements at Tevatron

5 MeV on the W Mass at LHC?

With 5 MeV W-mass accuracy

assuming present central values, one could exclude the SM at the 95% CL!

A challenge for ATLAS and CMS!

- need to understand p_T(W) distributions in theory (and in the data)
 - for W⁺ and W⁻
- need improved quark density functions (and realistic uncertainties) experimental handles are:
 - lepton charge asymmetries
 - Z rapidity distributions
 - low mass Drell-Yan (sea anti-quarks)
 - W+charm (strangeness)

Critical: strange contribution to W production!

Experimental challenges

- control lepton energy scale at <0.1%</p>
- energy resolution to ~1%
- p_T dependence of the efficiency to 1%

Critical: huge pile-up!

Electroweak and Top Quark Physics at the LHC

Part 3: Differential Cross Sections

Gautier Hamel de Monchenault CEA-Saclay IRFU-SPP

Ecole d'été de Gif Septembre 2012

Differential Cross Sections

W Transverse Momentum

Important ancillary measurement for W mass

- the bulk of the W production is at low q_T QCD predictions are delicate
- the W production at high q_T test of perturbative QCD at higher orders

PRD85 (2012) 012005

unfolded fiducial distributions for W and Z, compared to RESBOS NNLO calculation (observe shape distortion at low energy)

Signal MC corrected

- for hadronic recoil from Z sample
- at NNLO level using **RESBOS**

NNLO corrections are needed to describe the perturbative region up to 200 GeV

Note: RESBOS tuned to Tevatron data

Z Rapidity

Strong constraints on PDF sets

CMS

3

3.5

Tevatron versus LHC

Very different Drell-Yan rapidity distributions at the Tevatron and the LHC

Explore much larger x-Bjorken range at the LHC!

Wevents: Lepton Pseudo-Rapidity

Lepton Charge Asymmetry

the lepton charge asymmetry is a complex interplay of u_V , d_V , sea quarks and the V±A structure of the W decays

the asymmetry varies as a function of η of the lepton and changes sign: at large η the W⁻ cross-section is higher than the W⁺ cross-section, as a consequence of the V-A structure of the W to lepton coupling

Lepton Charge Asymmetry

ATLAS+CMS charge asymmetry results already improve u, d, u/d quark PDFs by up to 40% in the range 10⁻³ < x < 10⁻²

LHCb has coverage in rapidity that goes beyond ATLAS+CMS acceptance and extends sensitivity to much lower x values

LPCC - LHC EW Working Group

Drell Yan

The Drell-Yan Process

$$q + \overline{q} \to Z^0 / \gamma^* \to \ell^+ \ell^-$$

A Differential Measurement

Raw spectrum

Unfolding

FSR correction

Acceptance & Efficiency

Backgrounds

- estimated from control samples in the data when possible (QCD, top) otherwise from simulation
- subtracted bin-by-bin

Unfolding

- correct for migrations
 from bin to bin due (*here*)
 to detector resolution effects
 - response matrix from simulation
 - several methods to invert the matrix

Final State QED Radiation

- correct back to the propagator level
 - bin-by-bin by comparing pre-FSR and post-FSR invariant mass spectra

Acceptance and Efficiency

- using POWHEG MC
 - event-by-event corrections to NNLO with FEWZ

Additionnal Sources of Syst. Uncertainties

- Iepton energy scale
- theory: PDFs, EWK corrections

CMS: Drell-Yan

CMS: Doubly-Differential DY

Low Mass Region 20 < **Μ**(μμ) < 30 GeV

rapidity |y| of the DY pair

fully-corrected and unfolded rapidity distributions in 6 bins of di-muon invariant mass

- significant differences between data and calculations at low mass and mid-rapidity:
 - with FEWZ NNLO below 45 GeV
 - with POWHEG NLO below 30 GeV

LHCb: DY in Forward Region

LHCb at 14 TeV can potentially explore the experimentally poorly-known region of very small values of x (x<10⁻⁵) for relatively high Q² (test validity of DGLAP equations at low x)

Drell-Yan Angular Analysis

$$\begin{split} \frac{\mathrm{d}\sigma_{q}}{\mathrm{d}\cos\theta}(s) &= \frac{3\pi\alpha_{\mathrm{QED}}^{2}}{2s}\,Q_{q}^{2}\left(1+\cos^{2}\theta\right) \quad \mathbf{\gamma^{*} exchange} \\ &- \frac{3\alpha_{\mathrm{QED}}G_{F}M_{Z}^{2}}{2\sqrt{2}\Gamma_{Z}^{2}}\,\frac{s-M_{Z}^{2}}{s}\,\mathrm{BW}(s)\,Q_{q}g_{Vq}g_{V\ell}\left[\left(1+\cos^{2}\theta\right)+2\frac{g_{Aq}g_{A\ell}}{g_{Vq}g_{V\ell}}\cos\theta\right] \\ &+ \frac{3G_{F}^{2}M_{Z}^{4}}{16\pi\Gamma_{Z}^{2}}\,\mathrm{BW}(s)\,(g_{Vq}^{2}+g_{Aq}^{2})(g_{V\ell}^{2}+g_{A\ell}^{2})\left[\left(1+\cos^{2}\theta\right)+\frac{8}{3}A_{\mathrm{FB}}^{q}\cos\theta\right] \\ &\text{with} \quad \mathrm{BW}(s) = \frac{s\Gamma_{Z}^{2}}{(s-M_{Z}^{2})^{2}+s^{2}\Gamma_{Z}^{2}/M_{Z}^{2}} \quad \text{and} \quad A_{\mathrm{FB}}^{q} \equiv \frac{3}{4}\mathcal{A}_{q}\mathcal{A}_{\ell}. \end{split}$$

The forward-backward asymmetry A_{FB} results from an average over all flavor of quarks

$$\frac{\mathrm{d}\sigma\left(Z^0/\gamma^* \to \ell^+ \ell^-\right)}{\mathrm{d}\cos\theta^*} = \frac{3}{8}\left(1 + \cos^2\theta^*\right) + A_{\mathrm{FB}}\cos\theta^*$$

Difficulty at the LHC: the initial state is symmetric!

 at large rapidity, the longitudinal boost of the Z boson indicates more likely the direction of the parent (valence) quark

(use of Collins-Soper frame)

Forward-Backward Asymmetry

- good agreement with NLO predictions
- no sign
 of New Physics
 at high mass

Combined e+µ forward-backward asymmetries in Collins-Soper frame (unfolded to Born level)

Full Angular Analysis

Triple-differential cross section for $s=M_{\mu\mu}^2$, y and $\cos \theta^*$ (in **Collins-Soper** frame)

at reconstruction level: ٥

$$\frac{\mathrm{d}\sigma}{\mathrm{d}s\,\mathrm{d}y\,\mathrm{d}\cos\theta^{\star}} \propto \sum_{q=u,d,s,c,b} \mathcal{F}_{q\overline{q}}(s,y) \left[\sigma_{q\overline{q}}^{\mathrm{even}}(s,\cos\theta^{\star}) + \mathcal{D}_{q\overline{q}}(s,y) \times \sigma_{q\overline{q}}^{\mathrm{odd}}(s,\cos\theta^{\star})\right]$$
with
$$\int_{|\mathbf{n}^{\star}| \leq 2.3} \sigma_{q\overline{q}}^{\mathrm{odd}}(s,\cos\theta^{\star}) \propto \frac{3}{8} \left(1 + \cos^{2}\theta^{\star}\right)$$

$$\sigma_{q\overline{q}}^{\mathrm{odd}}(s,\cos\theta^{\star}) \propto A_{\mathrm{FB}}^{q\overline{q}}(s,\theta_{\mathrm{W}}) \times \cos\theta^{\star}$$

- p_T* < 18 GeV ٠
- q_⊤ < 25 GeV
- 80 < M < 110 GeV ٥

Quark "luminosity" F using LO parton densities (CTEQ6) parameterized as a function of s and y

Acceptance function D determined from Pythia at LO

Mixing Angle

Analysis in the muon channel

1.1 fb⁻¹ of 2011 data

about 300 000 events with 0.05% background

efficiency, resolution and final-state radiation corrections

$$\sin^2 \theta_{\text{eff}} = 0.2287 \pm 0.0020 (\text{stat}) \pm 0.0025 (\text{syst})$$

Main sources of systematic uncertainties

CMS-PAS-EWK-11-003

- LO modeling (POWHEG-NLO vs Pythia-LO)
- FSR corrections, PDF uncertainties
- resolution, tracker alignment

Running of $sin^2\Theta_W$

Charge Asymmetry in Top Quark Pair Production

Charge Asymmetry in t-tbar

Charge asymmetry refers to differences in rapidity of top quarks and antiquarks

- SM at LO QCD: charge asymmetry is exactly zero
- SM at NLO QCD: a small asymmetry appears due to
 - interferences between Born and box diagrams in $\mathbf{qq} \rightarrow \mathbf{tt}$
 - interferences between ISR and FSR in $qq \rightarrow ttg$
 - amplitudes odd under the exchange of t-tbar in $\mathbf{qg} \rightarrow \mathbf{ttq}$

small asymmetries at NLO in quark annihilation and flavor excitation, no asymmetry in gluon fusion

Tevatron: Forward-Backward Asymmetry

$$A_{\scriptscriptstyle FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \ \, \text{where} \ \ \, \Delta y = y_t - y_{\overline{t}}$$

dominant production at Tevatron: qq annihilation

LHC: Charge Asymmetry

initial state is charge symmetric: no forward-backward asymmetry

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} \quad \text{where} \quad \Delta|y| = |y_t| - |y_{\overline{t}}|$$

dominant production at LHC: gluon fusion

Tevatron: Charge Asymmetry

Experimentally, strong asymmetries are seen in D\emptyset and CDF:

Significant asymmetries

predominantly at

- high mass
- Iow pT
- Iarge ∆y

Hints of inconsistency with NLO QCD predictions up to 3σ at high mass

ATLAS: Charge Asymmetry

Lepton+jets channel

 event selection and background estimation ATLAS LHC@√s=7 TeV (2011) ∫Ldt = 1.04 fb⁻¹

arXiv:1203.4211

similar to that of cross-section measurement

jet assignment with kinematic likelihood

Charge asymmetry

- inclusive and in two bins of the t-tbar mass
- (2D) iterative Bayesian unfolding method

agreeement with NLO QCD predictions

New Physics in Asymmetry ?

New Physics can result in a charge asymmetry

by exchange of new heavy particles, for instance:

- Z'-bosons
- W' bosons with right-handed couplings
- axigluons
- Kaluza-Klein excitations of gluons

scans of model parameters taking into account available cross section measurements and constraints from searches for New Physics

Electroweak and Top Quark Physics at the LHC

Part 5: Rare Processes

Date: 2010-08-08 11:01:1

Gautier Hamel de Monchenault CEA-Saclay IRFU-SPP

Ecole d'été de Gif Septembre 2012

V+Jets

One of the most important sources

 of backgrounds
 for many processes:
 top quark physics,
 dibosons,
 searches
 (Higgs, SUSY, exotica)

		today
W/Z	NNLO	NNLO
V+1j	NLO	NLO+PS
V+2j	NLO	NLO
V+3j	LO	NLO
V+4j	LO	NLO
V+5j	LO	NLO soon

Accurate predictions for W/Z+jets production at the LHC are available

- Monte Carlo event generators
 - NLO + parton shower
 - (MC@NLO, POWHEG...)
 - LO (many legs) + parton shower (Alpgen, MadGraph, Sherpa)
- Parton level codes for distributions at NLO
 BlackHat, Rocket...

A tool to test most recent perturbative QCD predictions

Differential Distributions

W+jets: p_T 1st jet

W+3-jets: p_T jet 1, 2 and 3

good agreement with fixed-order calculations (BlackHat+Sherpa) and NLO MC (MC@NLO

W+charm Production

Sensitivity to the strangeness content of the proton (\rightarrow input for W mass)

Muon channel

- p_T > 25 GeV and |η| < 2.1
- m_T > 50 GeV
- no other muon
- at least 1 jet with
 p_T > 20 GeV and |η| < 2.1
- not more than 2 jets with
 p_T > 40 GeV (against top)
- require secondary vertex with positive or negative projection onto the jet axis (tags)
- high efficiency B-tagger (secondary vertex significance)

$$R_c^{\pm} = \frac{\sigma \left(W^+ + c\right)}{\sigma \left(W^- + c\right)} = 0.92 \pm 0.19(\text{stat}) \pm 0.04(\text{syst})$$
$$R_c = \frac{\sigma \left(W^{\pm} + c\right)}{\sigma \left(W^{\pm} + \text{jets}\right)} = 0.143 \pm 0.015(\text{stat}) \pm 0.024(\text{syst})$$

CMS-PAS-EWK-10-015

 $\begin{aligned} & \text{MCFM + CT10} \\ & R_c^{\pm} = 0.915^{+0.006}_{-0.006} \\ & R_c = 0.125^{+0.013}_{-0.007} \end{aligned}$

69

Electroweak Production of the Top Quark

Production of Single Top Quarks

Production of the top quark via electroweak interactions

m _{top} = 172.5 GeV	t-channel		tW channel	s-channel	
Tevatron @ 1.96 TeV	2.3 pb		0.3 pb	1.0 pb	
LHC @ 7 TeV	64.2 pb		15 6 mb	4.6 pb	
	41.7 pb	22.5 pb	15.0 pb	3.2 pb	1.4 pb

Motivations

- test of the SM predictions: sensitivity to the Wtb vertex in many ways
- constraints on u/d, b-quark and gluon PDFs
- test unitarity of the CKM matrix; measurement of |V_{tb}|
- search for non-SM phenomena at the Wtb vertex

Single Top at the Tevatron

At the Tevatron

- very low cross sections
 t- and s- channels comparable
 tW channel even smaller
- similarities with WH(bb) testing ground for advanced analysis techniques in Higgs boson searches (MVA: multivariate analyses)

Measure t- and s-channels simultaneously

- t-channel: observation at 5.5σ
- s-channel: no observation yet

 $\sigma_{\rm s+t-ch}({\rm CDF}) = 3.04 \pm 0.57 \text{ (stat+syst) pb}$

 $\sigma_{\rm s+t-ch}({\rm D}\emptyset) = 3.43 \pm 0.74 \text{ (stat+syst) pb}$
Single top, t-channel

Cross section @ LHC : 64 pb = 42 pb [t] + 22 pb [tbar]

t-channel cross section [t+tbar] about 40% of top quark pair production cross section

flavor excitation

W-gluon fusion

Scattering of virtual W with a b-quark

considered either through:

- flavor excitation: from b-quark density from the proton
- W-gluon fusion: from gluon splitting, $g \rightarrow bb$

Event topology

Single top quark recoiling against a jet:

- W from top:
 - 1 isolated lepton (e or μ) E_τ^{miss}
- b-quark from top: central high-p_T b-tagged jet
- one light-quark jet at high pseudo-rapidity
- possibly one low-p_T b-jet from gluon splitting

Main backgrounds

• W +jets, top quark pairs, QCD multijets

Single top, t-channel

CMS: t-channel

Selection

- exactly 1 isolated lepton
- exactly 2 jets, exactly 1 b-jet
- E_T^{miss} > 35 GeV (e); m_T(W) > 40 GeV (μ)

CMS LHC@√s=7 TeV (2011) ∫Ldt = 1.1-1.5 fb⁻¹

CMS-TOP-11-021

Signal extraction

UML fit to pseudo-rapidity of light-quark jet |η^{light-jet}|

Systematic uncertainties

- JES, b-tagging, lumi.
- W+2-jets, from SB of [130 < m(lvb) < 220 GeV] and 2-jets/0-b-tag
- t-tbar, from 3-jets/1-b-tag

$$\sigma_{\text{t-ch}}(\text{CMS}, 7 \text{ TeV}) = 70.2 \pm 5.2 \text{ (stat)} \pm 10.9 \text{ (lumi) pb}$$
(16%)
$$|V_{tb}| = 1.04 \pm 0.09 \text{ (exp)} \pm 0.02 \text{ (theory)}$$
(9%)

CMS: t-channel

Single top, tW channel

Also known as Associated Production of Single Top Cross section @ LHC : 16 pb [t+tbar] (charge symmetric)

tW channel not observed at the Tevatron

Top quark produced in association with a real W boson

Event topology

Single top quark produced with a W

- 2 W bosons dilepton
 2 isolated leptons (e or μ) large E_T^{miss}
 - lepton+jets
 - isolated lepton (e or μ)
 light-quark jets
 - E_{T}^{miss}
- 1 b-quark from top:
 1 central high-p_T b-tagged jet
- no additional jet

Main backgrounds

- t-tbar (!)
- DY (in dilepton channels ee and μμ)

Interferences at NLO QCD

between tW channel and top pair production. To define the tW signal, two schemes:

- DR (remove doubly-resonant diagrams)
- DS (locally cancel the contribution of top pair diagrams)

POWHEG implements DR and DS MC@NLO implements DS

Wt at NLO (example)

so far, tW only studied at the LHC in the **Dilepton** channel

ATLAS, CMS: tW channel

٠

٠

Event selection similar to t-tbar Dilepton channel

(except for jet requirements)

ATLAS: first evidence of single-top in tW channel

CMS LHC@√s=7 TeV (2011) ∫Ldt = 2.1 fb⁻¹

 $\sigma_{\rm tW}({\rm ATLAS}, 7 {\rm TeV}) = 17 \pm 6 ({\rm stat+syst}) {\rm pb}$

...current results are consistent with predictions

ATLAS: Single Top Summary

- slight excess in t-channel, both charges (not confirmed by CMS)
 - the R_t ratio provides original constraints on u and d-quark PDFs
- evidence for tW channel, in agreement with prediction
- s-channel still far from independent observation
 - larger cross section at 8 TeV will help

Pair Production of Gauge Bosons γ, W, Z

Anomalous Gauge Couplings

Effective Lagrangian WWV (V=γ,Z)

$$\mathcal{L}/g_{WWV} = ig_1^V [W^{\dagger}_{\mu\nu} W^{\mu} V^{\nu} - W^{\dagger}_{\mu} V_{\nu} W^{\mu\nu}] + i\kappa^V W^{\dagger}_{\mu} W_{\nu} V^{\mu\nu} + \frac{i\lambda^V}{M_W^2} W^{\dagger}_{\lambda\mu} W^{\mu}_{\ \nu} V^{\nu\lambda} - g_4^V W^{\dagger}_{\mu} W_{\nu} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) + g_5^V \varepsilon^{\mu\nu\rho\sigma} (W^{\dagger}_{\mu} \partial_{\rho} W_{\nu} - (\partial_{\rho} W^{\dagger}_{\mu}) W^{\nu}) V_{\sigma} + i\kappa^V W^{\dagger}_{\mu} W_{\nu} \tilde{V}^{\mu\nu} + i \frac{\tilde{\lambda}^V}{M_W^2} W^{\dagger}_{\lambda\mu} W^{\mu}_{\ \nu} \tilde{V}^{\nu\lambda}$$

WWV: 10 anomalous couplings assume QED, C and P invariance, and additional (LEP) relations \rightarrow 3 anomalous couplings $\Delta \kappa^{\gamma}, \Delta g_1^{\ Z}, \lambda = \lambda_{\gamma} = \lambda_Z$

anomalous

SM: all zero

 $\begin{array}{l} \textbf{ZV}\gamma\textbf{: 12 anomalous couplings}\\ \text{assume CP invariance and dim<8}\\ \rightarrow \quad \textbf{4 anomalous couplings}\\ \quad h_{3}{}^{\gamma}, \ h_{1}{}^{Z}, \ f_{4}{}^{\gamma}, \ f_{5}{}^{Z} \end{array}$

anomalous

Effective Lagrangian ZV_γ (V=γ,Z)

$$\mathcal{L}_{VV'V''} \frac{M_Z^2}{e} = -[f_4^{\gamma}(\partial_{\mu}F^{\mu\beta}) + f_4^Z(\partial_{\mu}Z^{\mu\beta})]Z_{\alpha}(\partial^{\alpha}Z_{\beta}) + [f_5^{\gamma}(\partial^{\sigma}F_{\sigma\mu}) + f_5^Z(\partial^{\sigma}Z_{\sigma\mu})]\tilde{Z}^{\mu\beta}Z_{\beta} - [h_1^{\gamma}(\partial^{\sigma}F_{\sigma\mu}) + h_1^Z(\partial^{\sigma}Z_{\sigma\mu})]Z_{\beta}F^{\mu\beta} - [h_3^{\gamma}(\partial_{\sigma}F^{\sigma\rho}) + h_3^Z(\partial_{\sigma}Z^{\sigma\rho})]Z^{\alpha}\tilde{F}_{\rho\alpha} + \dim 8$$

anomalous couplings result in violation of partial wave unitarity at large energy

Tevatron/ATLAS: assume energy dependence (*form factors*) to preserve unitarity

Wy, Zy : Anomalous Couplings

WZ/ZZ: Anomalous Couplings

ZZ: Anomalous Couplings

Summary of Cross Sections

Summary of W/Z Cross Sections

