Recherche directe de nouvelle physique au LHC

Henri Bachacou IRFU

École de Gif Gif-sur-Yvette 20-21 sept. 2012

Outline

Extra-Dimensions and Heavy Resonances

A Short History of Extra-Dimensions

- <u>1921-26</u>: Kaluza & Klein attempt to unify EM and relativity by adding a dimension to general relativity
 - → Compactification → Kaluza-Klein towers
 - → <u>E = nhc / R</u> (R = ED radius, n integer)
- <u>1998</u>: Large ED (Arkani-Hamed, Dimopoulos, Dvali)
- <u>1999</u>: Warped ED Warped Randall-Sundrum
- Since then: many more...

 $\checkmark M_{Pl}^2 \sim M_D^{2+n} R^n$

 $ds^2 = e^{-2kr_c|\phi|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + r_c d\phi^2$

 $\phi \approx -\phi, \quad |\phi| \leq \pi$

Large Extra-Dimensions (ADD)

V

■ Basic idea: In fact, gravity becomes strong at the TeVscale → Hierarchy Problem is gone.

$$Y(r) \sim \frac{m_1 m_2}{M_{Pl(4+n)}^{n+2}} \frac{1}{r^{n+1}}, \ (r \ll R)$$

- Apply Gauss' Law at 3+n dimensions:
 - for r<<R: V(r) ~ $1/r^{(n+1)}$

Gravity gets stronger at small distances!

- for r>>R: V(r) = 1/r (ED not visible at large distances)
- n = 1 and 2: excluded from macroscopic gravity observation

 $M_{Pl}^2 \sim M_D^{2+n} R^n$

Typical size of ED For $M_D \sim TeV$:

n	R
1	~ 1 mpc
2	~ 1 mm
4	~ 1 pm
6	~ 1 fm

Large Extra-Dimensions (ADD)

- KK tower of excited gravitons: large ED means small ΔE between states: ΔE ~ 1/R
 - → Experimentally: continuum
- At the LHC, three ways to look for it:
 - → Deviation in DY or dijet spectrum caused by continuum
 - → Monojet/monophoton: graviton production recoiling against quark or photon
 - → Black-hole

ADD: Search for Monojets

- Look for a jet and
 ~ nothing else
- Challenge:
 - → Instrumental background
 - → Understanding $Z(\rightarrow vv)$ + jets

Stringent limits on ADD

 $\mathcal{L}_{I}\tilde{G}$

g.6

ADD: Search for Monojets

- Look for a jet and ~ nothing else
- Challenge:
 - → Instrumental background
 - → Understanding $Z(\rightarrow vv)$ + jets
- Also sensitive to WIMP production: **d** ووووووووووو

g. 600

Microscopic Black Holes

- If Gravity becomes strong at TeV
 → strong enough to produce
 Microscopic black-holes decaying
 through Hawking radiation
- Large uncertainty on models due to our ignorance of quantum gravity
- Semi-classical models only for m(B.H.) >> m(threshold)
- A safe bet: decay is democratic and isotropic → Look for (many) jets (and leptons) at high mass

Microscopic Black Holes "multi-object" CMS analysis with 8 TeV data:

- Cut on total number of objects (jets, photons, electrons, muons) in event
- Look for deviation in total transverse energy S_T (a.k.a. H_T at ATLAS)

Black Holes: Multi-Jets, Lepton+Jets, Same-Sign

H. Bachacou, IRFU

Gif, 20-21/09/2012

Warped Extra-Dimensions (RS)

- One extra-dimension with negative curvature i.e. anti de Sitter metrix
- RS1: Planck brane and TeV brane at the boundaries of the ED
 - \rightarrow KK graviton tower with Δ E \sim 1 TeV
 - → Signature: KK graviton to dilepton or diphoton
- Bulk-RS: all fields propagate in ED and create KK tower.
 - → KK graviton couples to massive particles → large BR to WW, ZZ
 - \rightarrow KK gluon \rightarrow ttbar

$$ds^{2} = e^{-2kr_{c}|\phi|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + r_{c}d\phi^{2}$$
$$\phi \approx -\phi, \quad |\phi| \le \pi$$

Predicted by numerous extensions of the Standard Model:

- → Randall-Sundrum ED → Kaluza-Klein graviton
- → GUT-inspired theories, Little Higgs \rightarrow heavy gauge boson(s) Z' (W')
- → Technicolor → narrow technihadrons
- Experimental challenge: understand detector performance (resolution, efficiency) for a signal with (almost) no control sample at very high momentum → confidence in alignment, simulation, etc...
- Electrons and muons: reaching pT ~ 1 TeV!

- Dimuon channel
- Alignment critical
 - → Now close to nominal (30 µm) in most of the detector
 - → Resolution 13% at $p_T = 1 \text{ TeV}$
- Require 3-station tracks for good resolution → loss of acceptance
 - → Now also using 2-station tracks in well-understood regions
 - → This Winter: installation of 75% of missing EEL's completed → half recovered in 2012 data

Run Number: 190975, Event Number: 26669226 Date: 2011-10-13, 23:34:58 CET

Muon: blue Electron:black Cells: Files, EMC

m(μμ) = 1.25 TeV missing ET = 67 GeV

Persint

- Dielectron channel
- Excellent resolution: < 2% at high momentum
- Poor charge measurement → no charge requirement in the dielectron channel

 No deviation from SM is observed. Limits as a function of RS graviton mass and coupling m(RS graviton, k/M_{PI} = 0.1) > 2.16 TeV at 95% CL

Sequential SM: assume Z' with same couplings as SM Z

5 fb⁻¹at 7 TeV: m(SSM Z') > 2.21 TeV (95% CL)

(95% CL)

Search for Heavy Resonance: W' \rightarrow Iv

- W': the charged equivalent of the Z'
- Bulk-RS: excited KK W

$$m_T = \sqrt{2p_T \not\!\!\!E_T (1 - \cos\Delta\phi_{\ell, \not\!\!\!E_T})}$$

- Final state: 1 lepton + Missing E_T
- Look for Jacobian peak in transverse mass

H. Bachacou, IRFU

Search for Heavy Resonance: $W' \rightarrow Iv$

GeV 10¹⁰

20 10^{8}

Events /

 10^{9}

 10^{7}

 10^{6}

 10^{5}

10⁴

 10^{3}

CMS 2012 Preliminary

 $L dt = 3.67 \text{ fb}^{-1}$

√s = 8 TeV

 $W' \rightarrow \mu \nu$

Diboson

 $DY \rightarrow \mu\mu$

 $W \rightarrow \tau v$

 $W \rightarrow \mu v$

QCD

Data

tt +sinale top

W' $\rightarrow \mu \nu$ M=1.3 TeV W' $\rightarrow \mu \nu$ M=2.3 TeV

1500

tt + single top

W' $\rightarrow ev M=1.3 \text{ TeV}$

W' $\rightarrow ev$ M=2.3 TeV

2000

M_T [GeV]

W -> τ ν

QCD

Data

W-> e v

M_T [GeV]

2000

Sequential SM: m(W') > 2.85 TeV at 95% C.L. Also set limits on W KK

2500

Search for Heavy Resonance: Dijet Resonance

- Strong gravity, excited quarks, contact interaction
- Look for resonance above phenomenological fit of the data:

$$f(x) = p_1 (1 - x)^{p_2} x^{p_3 + p_4 \ln x}$$
$$x \equiv m_{jj} / \sqrt{s}$$

Probing the quark structure beyond 4 TeV

÷

Search for Heavy Resonance: Dijet Resonance

- approach (flat cross-section prior)
- Excited quark: m > 3.66 TeV at 95% CL

Search for Heavy Resonance: Dijet

m(jet-jet) = 4.0 TeV

Missing E_T = 100 GeV

Search for Heavy Resonance: Dijet Angular

- Most BSM signal are expected to be more central than QCD
- Study angular variable as a function of dijet mass
- Consider the two leading jets rapidity in their center of mass:

$$y^* = \pm \frac{1}{2}(y_1 - y_2)$$

Variable chi defined as: 0.15 $\chi \equiv \exp(|y_1 - y_2|) = \exp(2|y^*|)$ 0.1 as a function of m(jet-jet) 0.05 Limit on Quantum Black Holes: 0 m(QBH) > 4.14 TeV (exp. 4.11) for h=6

Search for Heavy Resonance: Dijet Angular

- Most BSM signal are expected to be more central than QCD
- Study angular variable as a function of dijet mass
- Alternatively, look at:

$$F_{\chi} = \frac{N_{\text{central}}}{N_{\text{total}}}$$

where $N_{central}$ is $|y^*| < 0.6$

Limit on Contact Interaction:
 Λ > 7.6 TeV at 95% CL
 (expected: 8.2 TeV)

Search for Heavy Resonances: Top-antitop

- Bulk RS: all fields propagate into the bulk → predicts KK of gauge bosons, esp. KK gluons
- Leptophobic Z'
- Large Branching Ratio to top-antitop

- For m(ttbar) > 1 TeV, specific boosted top reconstruction needed
 - → Experimentally: a whole new field!

Top-antitop Resonance

Jet Clustering Algorithms

- Starting point: topological clusters in the calorimeters
- Iterative procedure of merging near-by clusters into bigger ones (a.k.a proto-jets) until convergence
- For all proto-jets and proto-jet pairs, define:

$$\rho_{ij} = \min\left(p_{Ti}^{2p}, p_{Tj}^{2p}\right) \frac{(\Delta R_{ij})^2}{R^2}$$

$$\rho_{iB} = p_{Ti}^{2p}$$

- If ρ_{IJ} is the smallest ρ_{ij} or ρ_i , merge I and J
- If $\rho_{||}$ is the smallest of all $\rho_{||}$, it is a jet (and removed from list)

Jet Clustering Algorithms

- Two parameters:
- Parameter R is the analogue of cone side in a cone algorithm
 - → Typicall R ~ 0.4 0.6
 - \rightarrow Larger R ~ 1.0 ("fat jets") also used for boosted objects
- Parameter p:
 - \rightarrow p = 1: standard k_t algorithm
 - \rightarrow p = 0: C/A algorithm
 - \rightarrow p = -1: anti-k_t algorithm
- $\rho_{iB} = p_{T_i}^{2p}$ Standard in ATLAS: R = 0.4 anti-kt algorithm
 - → But others are used to study boosted objects and jet sub-structure

 $\rho_{ij} = \min\left(p_{Ti}^{2p}, p_{Tj}^{2p}\right) \frac{(\Delta R_{ij})^2}{D^2}$

Jet "Grooming"

- "Trimming":
- Start with a fat jet (R ~ 1 or more)
- Run k_t algorithm on clusters within the fat jet
- Keep only jets with pT > pT(fat jet) . f_{cut}

Jet "Grooming"

- "Pruning":
- Start with a fat jet (R ~ 1 or more)
- Run k_t or C/A algorithm on clusters within the fat jet
- At each step, if merging of two clusters fails, remove cluster with smallest pT

Jet Substructure Variables

Jet mass:
$$(m^{\text{jet}})^2 = (\sum_i E_i)^2 - (\sum_i p_i)^2$$

If top decay reconstructed within one jet, expect jet mass ~ 175 GeV

Note effect of Trimming:

Jet Substructure Variables

Splitting scales: Un-do the last step(s) of the k_t algorithm and look at the properties of the protojets:

$$\sqrt{d_{ij}} = \min(p_{\mathrm{T}i}, p_{\mathrm{T}j}) \times \Delta R_{ij}$$

- Ex: Last two protojets $\sqrt{d_{12}}$
- Typically, for a W → qq decay: Last two proto-jets are the two jets from the W: pT₁ ~ pT₂ are large (while for a single jet pT₂ << pT₁)

Top-antitop Resonance

- Event Topology:
 T-tbar → Wb Wb
- Final state depends on W decays:
 - → Dilepton final state:
 Both W → Iv (I = e or µ)
 - 2I + 2 b-jets (+2 neutrinos)
 - → Lepton+Jets final state:
 - $1 \text{ W} \rightarrow \text{Iv}, \ 1 \text{ W} \rightarrow \text{jj}$
 - 1I + 2 b-jets + 2 light jets (+1v)
 - → All-hadronic final state:
 - $2 \text{ W} \rightarrow \text{jj}$
 - 2 b-jets + 4 light jets (+0v)

Large Branching Ratio but more background

Top-antitop Resonance

Lepton+Jets final state:

 $1 \text{ W} \rightarrow \text{Iv}, 1 \text{ W} \rightarrow \text{jj}$

- 1I + 2 b-jets + 2 light jets (+1v)
- Boosted topology:
- Leptonic (W → Iv) side:
 lepton and b-jet overlap
- Hadronic (W → jj) side:
 b-jet and W jets overlap

Lepton + Jets channel: A Boosted Event Candidate

Top-antitop Resonance Latest Results from ATLAS

Event Selection

- ▶ AKT4: Anti- k_{\perp} (R=0.4) jets: $p_T>25\, ext{GeV}$, $|\eta|<2.5$
- AKT10: Anti- k_{\perp} (R = 1.0) jets: $|\eta| < 2.0$, $p_T > 350$ GeV, m > 100 GeV, $\sqrt{d_{12}} > 40$ GeV (expect $\sqrt{d_{12}} \approx m_t/2$ for t \rightarrow bW)

	resolved	boosted
trigger	single lepton trigger	fat jet (AKT10) trigger
leptons	1 lepton (e $^\pm$ or additional lepton (e $^\pm$ or lepton trigger match	μ^{\pm}), $p_{T}>$ 25 GeV or μ^{\pm}) veto, $p_{T}>$ 20 GeV —
Ęτ	e $^{\pm}$: $ ot\!\!\!/ \hspace{-1.5mm}/ \hspace{-1.5mm}/} $	
m_T^{W}	e $^{\pm}$: $M_{\mathcal{T}}(W) >$ 30 GeV, μ^{\pm} : $M_{\mathcal{T}}(W) + \not\!$	
jets	\geq 4(3) jets (if one jet $m_{jet} > 60 \text{GeV}$)	"leptonic jet": AKT4 jet "hadronic jet": AKT10 jet
b-tag	\geq 1 b-tag using AKT4 jets ($arepsilon_{ m b}=$ 70 %)	
		S. Fleischmann,
nacou, IRFU	Gif, 20-21/09/2012	
Top-antitop Resonance Latest Results from ATLAS

- Improve efficiency at high t-tbar mass with:
- Lepton "mini-isolation": cone shrinks at high momentum
- Trigger: use Fat Jet trigger (anti-kt jet R=1.0, pT>240 GeV)
 - → Better efficiency than lepton trigger at high mass
- Combine resolved and boosted selection: if an event is reconstructed by both methods, use the boosted one (better mass resolution)

Top-antitop Resonance Latest Results from ATLAS

About 1000 boosted t-tbar events reconstructed:

Top-antitop Resonance Latest Results from ATLAS

m(KK gluon) > 1.9 TeV at 95% CL

Search for Heavy Resonances: others...

- Many other resonance signatures are searched for:
 RS1 → diphoton
 - Bulk $RS \rightarrow ZZ$ or WW
 - $W' \to WZ$
 - Technihadrons \rightarrow ee or $\mu\mu$ or ZZ or WZ
- Especially diboson hadronic final states are promising but require careful reconstruction of boosted decays

4th Generation and Heavy Quarks

4th Generation and Heavy Quarks

- 4th generation would significantly enhance Higgs production cross section
 - → (almost) excluded by observed Higgs cross-section
- Beyond 4th generation: Vector-Like Quarks in Composite Higgs theories (cf A. Falkowski's lecture)
 - → More diverse phenomenology
- Loose constraints on CKM4 → decays to light quarks possible!

"Standard" SM4 Phenomenology

- t't' → WbWb: just like t-tbar but heavier
- b'b' → WtWt: just like t-tbar but messier (two additional W's)
- Single production becomes important at very large mass, but larger bgd: not really used.

Vector-Like Quark Phenomenology

- T': Decays to Wb, Zt, Ht
- B': Decays to Wt, Zb, Hb

- Signature: I + ETmiss + 4 jets (I=e,µ) and b-tagging
- Select boosted $W \rightarrow jj$ from t'
- Reconstruct the t' mass

- Signature: I + ETmiss + 4 jets (I=e,µ) and b-tagging
- Select boosted W → jj from t'
- Reconstruct the t' mass

- Data in agreement with SM expectation
- Assuming BR(t' → Wb) = 100%, m(t') > 656 GeV at 95% CL (expected limit: 638 GeV)

$b'b' \rightarrow WtWt \rightarrow lvbbqq + qqqq (l+jets channel)$

$b'b' \rightarrow WtWt \rightarrow Ivbbqq + qqqq (I+jets channel)$

- Observables:
 - # jets
 - # identified hadronic W's
- Control region: # jets < 6 → dominated by top-antitop and W+jets
- # hadronic W's well-described by simulation

b'b' \rightarrow WtWt \rightarrow Ivbbqq + qqqq (I+jets channel)

- Observables:
 - # jets
 - # identified hadronic W's
- Control region: # jets < 6 dominated by top-antitop and W+jets
- # hadronic W's well-described by simulation
- Signal region: # jets ≥ 6
- Constrain background in low jet and W multliplicity bins

b'b' \rightarrow WtWt \rightarrow Ivbbqq + qqqq (I+jets channel)

m_{h'} [GeV]

$b'b' \rightarrow Zb + X$

- Search for a resonance decaying to Z(→ee) + b-jet
- Inclusive search: reconstruc only one b' (other can decay to anything)
- Esp. relevant for Vector-Like Quarks
- Assuming VLQ coupling only to 3^d gen: m(b') > 358 GeV (95% CL)

H. Bachacou, IRFU

Gif, 20-21/09/2012

Vector-like Quarks Coupling to Light Quarks

- Chiral fermions are seriously constrained, but room for vector-like quarks
- Look for Wq or Zq resonance

W*/Z*

Q

v/l

W/Z

4th Generation and Vector-Like Quarks: Summary

- No time to show other analyses:
 - → t' and b' dilepton searches (without btagging): sensitive to light quark decays

Here limits assume 100% BR:

Analysis	Lower limit (95% CL)
t't' \rightarrow WbWb (I+jets)	656 GeV
b'b' \rightarrow WbWb (same-sign)	645 GeV
t't' \rightarrow WqWq (dilepton)	350 GeV
b'b' $ ightarrow$ Wq Wq (l+jets)	480 GeV
$\mathbf{Q}\mathbf{Q} ightarrow \mathbf{Z}\mathbf{b}\mathbf{+}\mathbf{X}$	400 GeV
t't' \rightarrow tZtZ (CMS)	475 GeV
$\textbf{t't'} \rightarrow \textbf{tA}_0\textbf{tA}_0$	420 GeV

Model-Independent Searches

With so much available model space, we need to make a generally applicable search, not just kill one model at a time (new ones grow too fast!) - recent ATLAS meeting, T. Golling

Model-Independent Searches

- Dedicated searches cannot cover every possible final state
- Complete the spectrum of analyses with model-independent searches
- Two examples:
 - → Inclusive same-sign search
 - → A generic search trying to look all possible final states (that may have been missed by the dedicated analyses)

Model-Independent Searches Inclusive Same-Sign Dilepton

- Inclusive: only requirement is two isolation same-sign leptons
- Look for excess as a function of lepton pair properties, namely dilepton invariant mass

Model-Independent Searches Inclusive Same-Sign Dilepton

 Limit presented in terms of fiducial cross-section limit, i.e. cross-section with detector and event-selection acceptance (as opposed to total cross-section):

- σ_{fid} is (almost) model-independent
- Can turn σ_{fid} into σ_{total} with generator-level information only
- Caveat: not exactly model-independent → must be conservative

Model-Independent Searches Inclusive Same-Sign Dilepton

			95% C.L. upper limit [fb]				
Particle-level definition of		Mass range	expected	observed	expected	observed	
			$e^{\pm}e^{\pm}$		$\mu^{\pm}\mu^{\pm}$		
acceptance:		M > 15 GeV	$45.0^{+17.3}_{-12.0}$	45.7	$23.4^{+8.6}_{-5.8}$	29.1	
	Electron requirement	Muon requirement	$M > 100 \mathrm{GeV}$	$24.3^{+9.1}_{-7.0}$	25.6	$11.9^{+4.4}_{-2.9}$	14.6
Leading lepton $p_{\rm T}$ Sub-leading lepton $p_{\rm T}$	$p_{\rm T} > 25 {\rm GeV}$ $p_{\rm T} > 20 {\rm GeV}$	$p_{\rm T} > 20 \text{ GeV}$ $p_{\rm T} > 20 \text{ GeV}$	$M > 200 \mathrm{GeV}$	$8.8^{+3.2}_{-2.9}$	8.1	$4.2^{+1.8}_{-1.1}$	6.6
Lepton η	$ \eta < 1.37 \text{ or } 1.52 < \eta < 2.47$	$\frac{ \eta < 2.5}{ \eta < 2.5}$	$M > 300 \mathrm{GeV}$	$4.5^{+1.6}_{-1.3}$	3.9	$2.3^{+0.8}_{-0.7}$	2.5
Isolation	$p_{\rm T}^{\rm cone0.3}/p_{\rm T} < 0.1$	$p_{\rm T}^{\rm cone0.4}/p_{\rm T} < 0.06 \text{ and}$ $p_{\rm T}^{\rm cone0.4} < 4 \text{ GeV} + 0.02 \times p_{\rm T}$	$M > 400 \mathrm{GeV}$	$2.9^{+1.1}_{-0.9}$	2.3	$1.6^{+0.6}_{-0.5}$	1.7
Particle-Level Isolation				e ⁺ e ⁺		$\mu^+\mu^+$	
			M > 15 GeV	$27.3^{+10.0}_{-7.9}$	23.8	$14.7^{+6.0}_{-3.2}$	14.9
			$M > 100 \mathrm{GeV}$	$16.2^{+6.0}_{-4.8}$	12.4	$8.2^{+3.2}_{-2.4}$	7.7
			$M > 200 \mathrm{GeV}$	$6.6^{+2.8}_{-1.5}$	6.5	$3.4^{+1.5}_{-0.7}$	4.2
			$M > 300 \mathrm{GeV}$	$3.5^{+1.6}_{-0.8}$	2.9	$2.0^{+0.8}_{-0.5}$	2.0
Also search for excess in ++			$M > 400 \mathrm{GeV}$	$2.4^{+1.1}_{-0.6}$	1.7	$1.5^{+0.6}_{-0.3}$	1.7
and separately				e^e^		$\mu^-\mu^-$	
	,		M > 15 GeV	$24.6^{+8.5}_{-6.8}$	29.1	$11.9^{+4.4}_{-3.4}$	18.0
			$M > 100 \mathrm{GeV}$	$12.7^{+4.6}_{-3.9}$	19.9	$5.8^{+2.2}_{-1.9}$	9.8
			$M > 200 \mathrm{GeV}$	$4.7^{+1.9}_{-1.3}$	4.4	$2.7^{+1.1}_{-0.7}$	4.3
			$M > 300 \mathrm{GeV}$	$2.8^{+1.1}_{-0.8}$	2.7	$1.4^{+0.7}_{-0.3}$	1.7
			$\overline{M} > 400 \mathrm{GeV}$	$1.8^{+1.0}_{-0.4}$	2.2	$1.2^{+0.4}_{-0.0}$	1.1

- Implemented in many ways in several experiments:
 - → Hera
 - → D0 Quary and CDF Sleuth
 - → CMS Music
 - → ATLAS generic search (shown here)
- Basic idea: look for an excess in the entire dataset (!)
- Caveats:
 - → Not optimized for any given signal. No complicated reconstruction.
 - → Background estimates not as accurate / trustworthy as in a dedicated search
 - → Very large trial factor: the more signal regions the more likely an excess is a statistical fluctuation → decrease sensitivity

Observation of an excess would trigger additionial studies on additional data

- ATLAS Generic Search
- 655 exclusive channels, as function of number of electrons, muons, photons, jets, b-jets, missing ET

object	jet	b-jet	electron	muon	photon	$E_{\mathrm{T}}^{\mathrm{miss}}$
label	j	b	е	μ	γ	ν
lower $p_{\rm T}$ cut	50 GeV	50 GeV	25 GeV	20 GeV	40 GeV	130 GeV

- Background estimated from Monte Carlo with conservative uncertainty on cross-sections
 - → QCD: 100% uncertainty
 - → Caveat: trust MC to simulate fake leptons

- Use lowest unprescaled trigger in each stream: electron/photon (e/g), muon, jet/MET/tau
- Part of the result for the e/g stream:

- Quantifying an excess: for each signal region, compute the p-value = probability that the background fluctuates at or above the observed number of events
- Take into account trial factor (a.k.a. Look-Elsewhere Effect) with pseudo-experiments (a.k.a. "toys")

- Sanity/Sensitivity check:
 - → Compare with toys in which a signal is injected

Event Classes

H. Bachacou, IRFU

Gif, 20-21/09/2012

Outlook: Life with a Higgs Boson

- A particle of mass ~ 126 GeV decaying to gg, ZZ, WW, was discovered this summer. How does it change the lanscape?
- Is it the SM Higgs boson? (see Louis'talk):
 - → Measure its branching ratios
 - → Measure its spin
- Exotic decays:
 - → Invisible Higgs : Higgs \rightarrow LSP's (cf monojet analysis)
 - → Higgs to exotic objects. E.g. Hidden Valley dark photon → LLP's or leptonjets
- Other Higgs? If there is one, there may be more (esp. SUSY)
- Technicolor and SM4 are in trouble. Most other models (esp. SUSY) live well with a light Higgs.
- From now on we must consider heavy particle decays to Higgs systematically (esp. Heavy Quarks, e.g. t' → tH)

Conclusion

- Unfortunately, New Physics was not "around the corner"... ... unless the Higgs is not an SM Higgs?
- Weak-scale SUSY is being pushed, but is not dead yet
- Experimental challenges as we enter further the Multi-TeV world:
 - → TeV leptons
 - → Boosted objects (W, top)
 - → Investigate less obvious signatures and pursue precision measurements
- Expect 30 fb⁻¹ at 8 TeV by the end of 2012
- And 30 fb⁻¹ at 13 TeV by the end of 2015 followed by 300 fb⁻¹ at 14 TeV by the end of the decade (?)
- It's only the beginning!

Bibliography, Ressources

- ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic
- CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
- P. Pralavorio, SUSY: https://pralavop.web.cern.ch/pralavop/conf.html
- BSM phenomenology review, Morrissey et al, arxiv0912.3259

Backup

Wjj

1st Generation Leptoquarks

1st Generation Leptoquarks

 $\beta = 1$: m > 660 GeV $\beta = 0.5$: m > 607 GeV New limits clearly surpass TeVatron Now working on 2nd and 3nd generation... 100% to eejj (pa ↓ 0.9 ATLAS Preliminary B(LQ 0.8 0.7 LQ<u>LQ</u> → eejj+evjj III ∞ 0.6 $\int Ldt = 1.03 \text{ fb}^{-1}$ 0.5 \sqrt{s} = 7 TeV 0.4 0.3 eejj+evjj (Exp.) 0.2 eejj+ev jj (Obs.) 0.1 D0 (5.4 fb⁻¹) 100% to(vv 200^{-1} 300 500 400 600 700 800 900 1000 1100 M_{LQ} [GeV] Channel not included here