Recherche directe de nouvelle physique au LHC

Henri Bachacou IRFU

École de Gif Gif-sur-Yvette 20-21 sept. 2012

Recherche directe de nouvelle physique au LHC

- Focus on ATLAS and CMS direct searches
- Apologies for the strong ATLAS bias...
- Not a comprehensive overview: I chose a few themes
- Much more information available here:
 - → https://twiki.cern.ch/twiki/bin/view/AtlasPublic
 - → https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
- See other lectures on related topics:
 - → SM and BSM theories
 - → Heavy Flavour
 - → SM and MSSM Higgs

Outline

Introduction

- The Standard Model and its limitations
- The main Beyond-Standard-Model candidates to cope with the SM limitations
- General methodology at the LHC
- The LHC and the ATLAS and CMS detectors

The Standard Model in 1 slide: 3 forces, 3 generations, 1 Higgs boson

- Strong, Weak, and Electromagnetic forces described by gauge theory:
 - \rightarrow SU(3)_{QCD} x SU(2)_LxU(1)
- Force carriers: photon, gluons, W and Z bosons
- SU(2)_LxU(1) spontanously broken by Higgs mechanism to give mass to W and Z bosons
- CKM matrix describes mixing of quarks
- Incredible success of the SM: explains (almost) all phenomena of particle physics from 0 to 1 TeV !

$$V(\Phi^{+}\Phi) = \mu^{2}\Phi^{+}\Phi + \frac{\lambda}{2}(\Phi^{+}\Phi)^{2}$$
$$v = \sqrt{\frac{-\mu^{2}}{\lambda}} = 246 \text{ GeV}$$

Success of the Standard Model: EW and CP-violation Precision Measurements

- Electroweak measurements at LEP, SLD, and Tevatron
- CP-violation at B-factories, K-factories

H. Bachacou, IRFU

Latest Success of the Standard Model: The Higgs Boson !

- Precision measurements at LEP, SLD, and Tevatron (Z pole, W mass, top mass) → constraint on Higgs mass
- A light Higgs is preferred
- LHC Higgs(-like) discovery at ~126 GeV is compatible with precision measuremens

Why look "beyond" the Standard Model? Some limitations of the Standard Model

- The Standard Model is an effective theory that must break down at a certain scale
 - → Hierarchy: quadratic divergence of the Higgs mass, extremely fine-tuned
 - → What is the underlying nature of EWSB?
- Dark Matter and Dark Energy
 - \rightarrow cannot be explained by SM
- Neutrinos have mass
 - → where are the right-handed neutrinos?
- How to include gravitation?
- How to produce enough CP-violation to explain the Universe matter-antimatter asymmetry? 4th generation of fermions?
- BSM models try to answer limitations of the SM

Why look "beyond" the Standard Model? The Hierarchy Problem

- Loop corrections to Higgs mass lead to quadratic divergences
- Hierarchy problem:
 Electroweak scale ~ 100 GeV
 Plank scale ~ 10¹⁹ GeV
 17 orders of magnitude!
- Fine tuning:
 - bare mass (very large)
 - radiative corrections (very large)
 - = 126 GeV
- Can new physics cancel the quadratic divergences?

Why look "beyond" the Standard Model? Dark Matter

- Dark Matter has been observed in several ways:
 - → Galaxy rotation curves
 - → Gravity lensing
 - → CMB anisotropy
- BSM phenomena have already been observed!

Why look "beyond" the Standard Model? Dark Matter

Why look "beyond" the Standard Model? Dark Energy

Why look "beyond" the Standard Model? The main candidates

- Many BSM models developped to answer SM limitations:
- Supersymmetry: addresses Hierarchy Problem, offers good Dark Matter candidates
- Technicolor: explains underlying nature of EW SB through strong interaction *
- Extra-dimensions: addresses Hierarchy Problem by bringing the Plank scale down to TeV (i.e. explains why gravity is so weak)
- 4th generation models: new source of CP-violation capable of explaining Matter-Antimatter asymmetry *
- Etc...

* but have a hard time explaining the recent observation at 126 GeV

How do we look for BSM at the LHC? A very long list of models x signatures

1 jet + MET Many extensions of the SM have been Many iets + MET developed over the past decades. models 1 lepton + MET Supersymmetry Same-sign di-lepton leading to **Dilepton resonance** Extra-Dimensions **Diphoton resonance** Technicolor(s) many Diphoton + MET Little Higgs **Multileptons** signatures! Lepton-jet resonance No Higgs Lepton-photon resonance GUT Gamma-jet resonance **Diboson resonance** Must Hidden Valley Z+MET Leptoquarks proceed W/Z+Gamma resonance Top-antitop resonance Compositeness methodically Slow-moving particles 4th generation (t', b') Long-lived particles (?) **Top-antitop production** LRSM, heavy neutrino Lepton-Jets etc... Microscopic blackholes **Dijet resonance** etc... (for illustration only)

How do we look for BSM at the LHC? A very long list of models x signatures

- Many extensions of the SM have been developed over the past decades:
- Supersymmetry^{*}
- Extra-Dimensions
- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley
- Leptoquarks
- Compositeness
- 4th generation (t', b')
- LRSM, heavy neutrino
- etc...

(for illustration only)

- 1 jet + MET jets + MET 1 lepton + MET Same-sign di-lepton **Dilepton resonance Diphoton resonance Diphoton + MET** Multileptons Lepton-jet resonance Lepton-photon resonance Gamma-jet resonance **Diboson resonance** Z+MET W/Z+Gamma resonance Top-antitop resonance Slow-moving particles Long-lived particles Top-antitop production
- Lepton-Jets
- Microscopic blackholes
- Dijet resonance
- etc...

A complex 2D problem

- Experimentally, a **signature standpoint** makes a lot of sense:
 - → Practical
 - → Less modeldependent
 - → Important to cover every possible signature

How do we look for BSM at the LHC? Looking for models or for signatures?

- Several types of searches:
- Very model-specific:
 - → Ex: monopole search
 - → Look for highly-ionizing particle that bends in the wrong direction
- Very model-independent:
 - → Ex: inclusive search for same-sign leptons
- Somewhere In-between (most analyses):
 - → motivated by a particular model, but tries to remain inclusive
 - → Ex: SUSY analysis looking for final state with jets and missing ET

The Large Hadron Collider (LHC)

- LHC has performed extremely well:
 - → 5.3 fb⁻¹ at \sqrt{s} = 7 TeV delivered in 2011
 - → Already ~ 15 fb⁻¹ at √s = 8 TeV delivered in 2012, expect close to 30 fb⁻¹ by the end of the the year!
- Past 2 years: significant gain every 6 months: difficult to keep up!

Pile-up: several proton-proton interactions in each bunch-crossing

- Z → mu mu event... and 24 other collisions from the same bunchcrossing (a.k.a. "in-time pile-up")
- Due to small bunch spacing (50 ns), also effect from collisions from previous and next crossings (a.k.a. "outof-time pile-up")

The ATLAS and CMS Detectors: same goals, different choices

- 3.8T solenoid containing calorimeters
 - Silicon tracker: $\sigma(p_T)/p_T \sim 15\%$ at 1TeV
- EM cal: homogeneous Lead-Tungstate crystal, $\sigma_{\rm E}/{\rm E} \sim 3\%/\sqrt{{\rm E}[{\rm GeV}]} \oplus 0.5\%$
- HAD cal: Brass-scint., ≥7λ₀ σ_E/E ~ 100%/√E[GeV] **⊕** 5%

Iron return yoke muon spectrometer

- 2T solenoid inside calorimeters
- Silicon+TRT tracker + electron ID
- EM cal: Longitudinally segmented Lead-Ar: $\sigma_{\rm E}/{\rm E} \sim 10\%/\sqrt{{\rm E}[{\rm GeV}]} \oplus 0.7\%$
- HAD cal: Fe-scint + Cu-Ar, ≥11 λ_0 $\sigma_E/E \sim 50\%/\sqrt{E[GeV]}$ ⊕ 3%
- Air-toroid muon sp.: $\int \sqrt{B} dI = 1$ to 7 T.m

The CMS Detector

The ATLAS Detector

A word about Object Reconstruction

H. Bachacou, IRFU

A word about Object Reconstruction

Missing Transverse Energy = - $\Sigma \overrightarrow{p}_T(calo) - \Sigma \overrightarrow{p}_T(muon) = p_T$ (undetected)

(should be called missing transverse momentum)

A word about Object Reconstruction

Number of reconstructed primary vertices

Pile-up and Calorimeter Isolation

- "Isolation": amount of energy surrounding a lepton
- Crucial variable to reject fake leptons

_arge gap

200

ATLAS Preliminary

100

solation energy [GeV]

5

-1

-2^t

Missing ET and pile-up

- Use fraction of tracks from the Primary Vertex associated to a jet (a.k.a Jet Vertex Fraction) to correct for pile-up:
- Similarly, correct energy not associated with jets (a.k.a. Soft Term Vertex Fraction)

Events / 4 GeV

Data / MC

A word about Trigger

Supersymmetry

Supersymmetry

- Extension of the Poincaré algebra
- Fermion ↔ Boson symmetry
- Predicts new spectrum of supersymmetric particles
 <u>The pro's:</u>
- Theoretically pleasing → Ingredient to string theory
- Solves many problems of the SM. Ex: stabilizes Higgs sector
- Excellent Dark Matter candidate

Supersymmetry

- Extension of the Poincaré algebra
- Fermion ↔ Boson symmetry
- Predicts new spectrum of supersymmetric particles
 <u>The con's:</u>

- It has not been seen yet:
 - → Must be seriously broken: m(selectron) >> m(electron)
 - → To avoid lepton/baryon # violation, must add R-parity: R = (-1)^{3(B-L)+2s} Side effect: Lightest SUSY Particle (LSP) is stable → Excellent Dark Matter candidate
- Many free parameters

spin

Which Supersymmetry? SUSY Phenomenology is <u>Very</u> Diverse

The MSSM and the Constrained MSSM

- MSSM: N=1 and 2 Higgs Doublets. 105 free parameters
- CMSSM / mSUGRA: down to 5 parameters
 - → Strong assumptions, esp. on universality of the 3 generations

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates	
Higgs bosons	0	+1	$H^0_u \; H^0_d \; H^+_u \; H^d$	$h^0 \hspace{0.1 cm} H^0 \hspace{0.1 cm} A^0 \hspace{0.1 cm} H^{\pm}$	
		$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$		(same)	
squarks	0	-1	$\widetilde{s}_L \widetilde{s}_R \widetilde{c}_L \widetilde{c}_R$	(same)	
			$\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R$	$\widetilde{t}_1 \widetilde{t}_2 \widetilde{b}_1 \widetilde{b}_2$	
		-1	$\widetilde{e}_L \widetilde{e}_R \widetilde{ u}_e$	(same)	
sleptons	0		$(Bino) \widetilde{\mu} \widetilde{W}_{ino} \widetilde{\mu}_{R} \widetilde{\nu}_{(Higgsino)}$	(same)	
			$\widetilde{ au}_L \widetilde{ au}_R \widetilde{ uu}_{ au}$ (Wino) (Higgsino)	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ u}_ au$	
neutralinos	$\mathrm{s} egin{array}{c c c c c c c c c c c c c c c c c c c $		$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$	
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^\pm \widetilde{C}_2^\pm	
gluino	gluino 1/2 -1		\widetilde{g}	(same)	
goldstino 1/2 (gravitino) (3/2) -1		\widetilde{G}	(same)		

MSSM: 29 sparticles + 5 Higgs

MSUGRA parameters:

- m₀: mass of scalars (squarks and sleptons) at GUT scale
- m_{1/2}: mass of fermions (gluinos and gauginos) at GUT scale
- A₀: trilinear couplings

•
$$\tan \beta = \langle H_u \rangle / \langle H_d \rangle$$

Sign of µ

Supersymmetry: Production at LHC

Supersymmetry: Cascades at the LHC

- Cascade depends on SUSY mass spectrum
- Missing ET caused by LSP escaping detector
 - → Larger Missing ET if ΔM is large
 - → "compressed" SUSY: small ΔM and ~ no missing ET

Supersymmetry: Cascades at the LHC

Some typical cascades:

Looking for squarks and gluinos $\tilde{q} \rightarrow q \tilde{\chi}_1^0$ Jets + Missing E_T (a.k.a. "0-lepton") $\tilde{g} \rightarrow q q \tilde{\chi}_1^0$

- "Workhorse" analysis of SUSY+MET searches
- Several analyses developped by ATLAS and CMS. Use the ATLAS analysis as an example:
- Select events with 2 to 6 jets
- Veto leptons and events with > 6 jets (left to dedicated highmultiplicity analysis)
- Trigger: Jet p_T > 75 GeV and Missing E_T > 55 GeV
 - $\epsilon > 98\%$ above turn-on
- Discriminant variables:
 - → H_T = sum of jet p_T (including jets with p_T > 40 GeV and $|\eta|$ < 2.8)
 - \rightarrow m_{eff} = H_T + Missing E_T
- Optimize cut on m_{eff} and Missing ET for each jet multiplicity

<u>SUSY</u>: Jets + Missing E_{T}

ATLAS 7 TeV analysis selection:

(re-optimized a bit for 8 TeV)

11 signal regions

above trigger turn-on Cut-and-count in each signal region Channel Requirement A' А В D Ε $E_{\rm T}^{\rm miss}[{\rm GeV}] >$ 160 $p_{\rm T}(j_1) \,[{\rm GeV}] >$ 130 60 $p_{\rm T}(j_2)$ [GeV] > $p_{\rm T}(j_3)$ [GeV] > 60 60 60 60 _ _ $p_{\rm T}(j_4) \,[{\rm GeV}] >$ 60 60 60 _ _ _ $p_{\rm T}(j_5)$ [GeV] > 40 40 _ _ _ $p_{\rm T}(j_6) \,[{\rm GeV}] >$ 40 $\Delta \phi$ (jet, $E_{\rm T}^{\rm miss}$)_{min} > $0.4 (i = \{1, 2, (3)\})$ $0.4 (i = \{1, 2, 3\}), 0.2 (p_T > 40 \text{ GeV jets})$ $E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$ 0.25 (3j) 0.3 (2j) 0.4 (2j) 0.25 (4j) 0.2 (5j) 0.15 (6j)

and n

ETmissr

Jet p_T

n _{eff}	$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	> 1900/1400/-	-/1200/-	1900/-/-	1500/1200/900	1500/-/-	1400/1200/90	0
		2 jet	S	3	4	5	6	
	Dechagou IDELI							-

-(incl.) [CoV1 >

- Low jet-multiplicity: sensitive to squark production
- High jet-multiplicity: sensitive to gluino production

$$\begin{split} \tilde{q} &\to q \tilde{\chi}_1^0 \\ \tilde{g} &\to q q \tilde{\chi}_1^0 \end{split}$$

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

- Low jet-multiplicity: sensitive to squark production
- High jet-multiplicity: sensitive to gluino production

$$\begin{split} \tilde{q} &\to q \tilde{\chi}_1^0 \\ \tilde{g} &\to q q \tilde{\chi}_1^0 \end{split}$$

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

- Low jet-multiplicity: sensitive to squark production
- High jet-multiplicity: sensitive to gluino production

$$\begin{split} \tilde{q} &\to q \tilde{\chi}_1^0 \\ \tilde{g} &\to q q \tilde{\chi}_1^0 \end{split}$$

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

- Low jet-multiplicity: sensitive to squark production
- High jet-multiplicity: sensitive to gluino production

$$\begin{split} \tilde{q} &\to q \tilde{\chi}_1^0 \\ \tilde{g} &\to q q \tilde{\chi}_1^0 \end{split}$$

$$\begin{split} \tilde{q} &\to q \, \tilde{\chi}_1^0 \ \tilde{g} &\to q q \, \tilde{\chi}_1^0 \end{split}$$

- Low jet-multiplicity: sensitive to squark production
- High jet-multiplicity: sensitive to gluino production

$$\begin{split} \tilde{q} &\to q \tilde{\chi}_1^0 \\ \tilde{g} &\to q q \tilde{\chi}_1^0 \end{split}$$

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

- Background estimation is (mostly) data-driven
- Define control regions with enhanced background:

CR	SR background	CR process	CR selection
CRY	$Z(\rightarrow \nu\nu)$ +jets	γ +jets	Isolated photon
CRQ	QCD jets	QCD jets	Reversed $\Delta \phi$ (jet, $\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$) _{min} and $E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(Nj)$ cuts
CRW	$W(\rightarrow \ell \nu)$ +jets	$W(\rightarrow \ell \nu)$ +jets	30 GeV < $m_T(\ell, E_T^{\text{miss}})$ < 100 GeV, <i>b</i> -veto
CRT	$t\bar{t}$ and single-t	$t\bar{t} \rightarrow bbqq'\ell\nu$	$30 \text{ GeV} < m_T(\ell, E_T^{\text{miss}}) < 100 \text{ GeV}, b\text{-tag}$

Calibrate backgrounds to control regions:

$$N(SR, scaled) = N(CR, obs) \times \left[\frac{N(SR, unscaled)}{N(CR, unscaled)}\right]$$

from Monte-Carlo

- Background estimation is (mostly) data-driven
- Result for the 8 TeV "tight selection" Signal Regions:

Signal Region	A-tight	B-tight	C-tight	D-tight	E-tight	
MC expected events						
Diboson	3.3	0.2	0.0	0.8	2.6	
W+jets	6.6	5.6	2.1	3.4	3.3	
Z/γ^* +jets	7.4	4.5	1.9	1.3	1.3	
$t\bar{t}$ + single top	1.0	1.1	0.6	1.8	2.7	
Fitted background events						
Diboson	3.3 ± 3.1	0.2 ± 1.4	_	0.8 ± 0.4	2.6 ± 2.0	
Multi-jets	_	_	_	0.4 ± 0.5	0.1 ± 0.2	
W+jets	3 ± 4	2.7 ± 3.4	0.3 ± 0.5	_	0.8 ± 1.3	
Z/γ^* +jets	6.8 ± 2.2	5.1 ± 1.7	2.0 ± 1.1	2.5 ± 1.1	1.2 ± 0.7	
$t\bar{t}$ + single top	0.8 ± 0.8	0.8 ± 0.9	0.6 ± 0.5	2.6 ± 1.6	5.1 ± 3.3	
Total bkg	14 ± 5	8.7 ± 3.4	2.8 ± 1.2	6.3 ± 2.1	10 ± 4	
Observed	10	7	1	5	9	
p ₀	0.499	0.500	0.499	0.500	0.499	
UL on N_{BSM}	8.9	7.3	3.3	6.0	9.3	
UL on σ_{BSM} (fb)	1.53	1.26	0.57	1.03	1.60	

- Limit on simplified model: consider only squark and gluino pair production decaying to squarks, gluinos, quarks, and Lightest SUSY Particle (LSP)
- m(squark) > 1.4 TeV, m(gluino) > 1.1 TeV

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

- Limits on MSUGRA/CMSSM:
 m(squark) = m(gluino) > 1.5 TeV
- MSUGRA limits in m₀ m_{1/2} plane:

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

"Natural" SUSY: a lighter 3rd generation?

- SUSY solves Hierarchy Problem only if 3rd generation is "light" i.e. m(stop) ~ m(top)
 - → Other gen. can be heavier
- What if 3^d generation lighter than others?
 - → Remove constraint of universal of mSUGRA/CMSSM
- Look specifically for stop and sbottom:
 - → Direct production
 - → Through gluino decays

"Natural" SUSY: a lighter 3rd generation?

Gif, 20-21/09/2012

"Natural" SUSY: a lighter 3rd generation? Direct Sbottom Production

2 b-jets + Missing ET Use "contransverse mass": $m_{\rm CT} = \sqrt{\left[E_T(b_1) + E_T(b_2)\right]^2 - \left[p_T(b_1) - p_T(b_2)\right]^2}$ $m_{\tilde{h}}^2 - m_{\tilde{\chi}_1^0}^2$ Endpoint at: for ttbar ~ 135 GeV, for sbottom: $m_{\tilde{b}}$ $\tilde{b}_1 - \tilde{b}_1$ production, $b_1 \rightarrow b \tilde{\chi}_2^{\prime}$ ∑₀⁵⁰⁰ 9 9 450 Events / 25 GeV ATLAS Preliminary Observed limit (±1 $\sigma_{\text{theory}}^{\text{SUSY}}$ Data 201 **ATLAS** Preliminary SM Total L dt ~ 4.7 fb⁻¹. $\sqrt{s} = 7$ TeV Expected limit $(\pm 1 \sigma_{ava})$ 10^{3} Top production L dt = 4.7 fb⁻¹, √s=7 TeV SR1, before selection in m_{cr} W production Z production All limits at 95% CL CDF 2.65 fb⁻¹ Diboson, tt+W/Z/bb 350 102 D0 5.2 fb⁻¹ Multi-iet SM+SUSY:m = 400 GeV, m = 50 GeV ATLAS 2.05 fb⁻ 300 10 250 200 1₽ 150 data / exp 100 50 350 400 450 500 0 100 150 200 250 300 50 500 550 600 150 200 250 300 350 400 450 m_{cT} [GeV] m_̃ [GeV]

H. Bachacou, IRFU

"Natural" SUSY: a lighter 3rd generation? Stop in gluino decays

- Look for 4 top quarks and missing ET g 2000.
- Main background is ttbar → reject it by requiring either of the following:
 - → 3 b-jets
 - → 2 same-sign leptons
 - → Large jet multiplicity
- Sensitive to m(gluino) <1000 GeV for m(LSP) <380 GeV

		ATLAS SUSY Searches* - 95% CL Lower Limits (Status: SUSY 2012)	
60	MSUGRA/CMSSM : 0 lep + j's + E _{T,miss}	1.50 TeV (ATLAS-CONF-2012-109)	
the	MSUGRA/CMSSM : 1 lep + j's + E _{T,miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104] 1.24 TeV $q = g \text{ mass}$ Ldt = (1.00 - 5.8)) fb ⁻¹
arc	Pheno model : 0 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109] 1.18 TeV g mass (m(q) < 2 TeV, light $\chi_1^{(r)}$)	
Se	Pheno model : 0 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109] 1.38 TeV q mass (m(g) < 2 TeV, light $\chi_1^{(i)}$ [S = 7, 8	leV
ive	Gluino med. $\tilde{\chi}^{\perp}(\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^{\perp})$: 1 lep + j's + $E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-041] 900 GeV $g \text{ mass } (m(\chi_1) < 200 \text{ GeV}, m(\chi^2) = \frac{1}{2}(m(\chi')+m(\tilde{g}))$	40
lus	GMSB : 2 lep (OS) + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [Preliminary] 1.24 TeV g mass (tanβ < 15) ATL	AS
lnc	GMSB: $1-2\tau + 0-1$ lep + j's + E	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-112] 1.20 TeV g mass (tanβ > 20) Prelimi	inary
	$GGW: \gamma\gamma + E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072] 1.07 TeV g mass (m($\chi_1^{(v)}$) > 50 GeV)	
	$\tilde{g} \rightarrow bb \tilde{\chi}_{a}^{\circ}$ (virtual b): 0 lep + 1/2 b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6193] 900 GeV $g \max_{\tau} (\widetilde{\chi_{1}}) < 300 \text{ GeV}$	
30	$\tilde{g} \rightarrow b \bar{b} \chi_{\tilde{\chi}}$ (virtual b) : 0 lep + 3 b-j's + $E_{T, miss}$	L=4.7 fb ⁻¹ , 7 TeV [1207.4686] 1.02 TeV g mass (m(x)) < 400 GeV)	
ate	$\tilde{g} \rightarrow b \tilde{\chi}_{1}^{\circ}$ (real b) : 0 lep + 3 b-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1207.4686] 1.00 TeV \tilde{g} mass $(m(\chi_1) = 60 \text{ GeV})$	
squ	$\tilde{g} \rightarrow t t \tilde{\chi}_{to}^{\sim}(virtual t)$: 1 lep + 1/2 b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6193] 710 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 150 \text{ GeV})$	
	$\tilde{g} \rightarrow t\bar{t}\chi^{\gamma}$ (virtual t) : 2 lep (SS) + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-105] 850 GeV g mass (m(x)) < 300 GeV)	
ge ino	$\tilde{g} \rightarrow t \tilde{\chi}_{1}^{\circ}$ (virtual t) : 3 lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-108] 760 GeV g mass (any m(x) < m(g))	
3rd alui	$\tilde{g} \rightarrow t\bar{t}\chi_{1}^{\nu}$ (virtual t): 0 lep + multi-j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103] 1.00 TeV \tilde{g} mass $(m(\chi^2)) < 300 \text{ GeV}$	
., .	$\tilde{g} \rightarrow t \tilde{\chi}_{1}$ (virtual t) : 0 lep + 3 b-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1207.4686] 940 GeV g mass (m(x) < 50 GeV)	
	$\tilde{g} \rightarrow t t \tilde{\chi}_{1}$ (real t) : 0 lep + 3 b-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1207.4686] 820 GeV g mass $(m(\chi_1) = 60 \text{ GeV})$	
(a	bb, $b_1 \rightarrow b \overline{\chi}_1^{\circ}$: 0 lep + 2-b-jets + $E_{T, \text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-106] 480 GeV b mass $(m(\chi_1) < 150 \text{ GeV})$	
ion	\sum_{n} bb, $b_1 \rightarrow t \tilde{\chi}_1$: 3 lep + j's + $E_{T, miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-108] 380 GeV \hat{g} mass $(m(\chi_1^{\pm}) = 2 m(\chi_1^{\pm}))$	
uct uct	tt (very light), t $\rightarrow b\tilde{\chi}_{1}^{\pm}$: 2 lep + $E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-059] 135 GeV t mass $(m(\chi_1^{2}) = 45 \text{ GeV})$	
2 DO	tt (light), t \rightarrow b $\tilde{\chi}_{1}^{x}$: 1/2 lep + b-jet + $E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-070] 120-173 GeV t mass $(m(\chi_1^0) = 45 \text{ GeV})$	
t pi	\underline{tt} (heavy), $\underline{t} \rightarrow t \overline{\chi}_{a}^{v}$: 0 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.1447] 380-465 GeV t mass $(m(\chi_1^{(2)}) = 0)$	
d g	\underline{t} (heavy), $\underline{t} \rightarrow t \overline{\chi}_{a}^{*}$: 1 lep + b-jet + $E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-073] 230-440 GeV t mass $(m(\chi_1) = 0)$	
g, g	tt (heavy), t $\rightarrow t\bar{\chi}_1^*$: 2 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-071] 298-305 GeV $t mass (m(\chi_1^2) = 0)$	
	tt (GMSB) : $Z(\rightarrow II) + b$ -jet + $E_{T miss}$	L=2.1 fb ⁻¹ , 7 TeV [1204.6736] 310 GeV t mass (115 < m(χ_1^0) < 230 GeV)	
> to	$\lim_{t \to +\infty} _L, \to \tilde{\chi}_{\mathfrak{m}} : 2 \operatorname{lep} + E_{T, \operatorname{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-076] 93-180 GeV Mass $(m(\chi_1) = 0)$	
EV	$\tilde{\chi}_1 \tilde{\chi}_1, \tilde{\chi}_1 \rightarrow v(\bar{v}) \rightarrow v\tilde{\chi}_{M} : 2 \text{ lep } + E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-076] 120-330 GeV $\tilde{\chi}_{1}^{-}$ mass $(m(\tilde{\chi}_{1}^{-}) = 0, m(\tilde{y}_{1}) = \frac{1}{2}(m(\tilde{\chi}_{1}^{-}) + m(\tilde{\chi}_{1})))$	
	$\tilde{\chi}_1 \tilde{\chi}_2 \rightarrow 3l(lvv) + v + 2\tilde{\chi}_1 : 3 lep + E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-077] 60-500 GeV χ_1^- mass $(m(\chi_1^-) = m(\chi_2^-), m(\chi_1^-) = 0, m(\bar{1}, \bar{v})$ as above)	
2	AMSB (direct $\tilde{\chi}_1$ pair prod.) : long-lived $\tilde{\chi}_1$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-111] 210 GeV χ_1^- Mass $(1 < \tau(\chi_1^-) < 10 \text{ ns})$	
live	Stable g R-hadrons : Full detector	1=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075] 985 GeV g mass	
-d-	Stable t R-hadrons : Full detector	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075] 683 GeV t mass	
D 3	Metastable g R-hadrons : Pixel det. only	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075] 910 GeV g mass (τ(g) > 10 ns)	
	GMSB : stable ī	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075] 310 GeV τ mass (5 < tan β < 20)	
	RPV : high-mass eµ	L=1.1 fb ⁻¹ , 7 TeV [1109.3089] 1.32 TeV V_{e} mass $(\lambda_{311}^{e}=0.10, \lambda_{312}^{e}=0.05)$	
2	Billnear RPV : 1 lep + J's + $E_{T,miss}$	L=1.0 fb ⁻¹ , 7 TeV [1109.6606] 760 GeV $q = g \text{ mass} (c\tau_{LSP} < 15 \text{ mm})$	
CC.	BC1 RPV : 4 lep + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-035] 1.77 TeV g mass	
	$\text{KPV} \chi_1 \rightarrow \text{qq}\mu: \mu + \text{heavy displaced vertex}$	L=4.4 fb ^{-*} , 7 TeV [ATLAS-CONF-2012-113] 700 GeV q mass ($3.0 \times 10^{-*} < \lambda_{211} < 1.5 \times 10^{-*}$, 1 mm < ct < 1 m, g decoupled)	
ler	Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$	L=4.6 fb ^{-*} , 7 TeV [ATLAS-CONF-2012-110] 100-287 GeV SGIUON MASS (incl. limit from 1110.2693)	
Oth	Spin dep. WIMP interaction : monojet + $E_{T,miss}$	L=4.7 fb ⁺ , 7 TeV [ATLAS-CONF-2012-084] 709 GeV [M ⁺ SCale (m _χ < 100 GeV, vector D5, Dirac χ)	
	spin indep. while interaction . monojet + E T.miss.	L=4./ 10 , / Tev [AT LAS-CONF-2012-084] 548 Gev IVI SCALE (m _χ < 100 GeV, tensor D9, Dirac χ)	

10⁻¹

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty. Mass scale [TeV]

10

1

Supersymmetry: Summary

SUSY MSUGRA/CMSSM is starting to be fine-tuned

- → Might be its last year to live...
- With more than 5 fb⁻¹, SUSY prod. mechanisms open up → exclusive 3rd generation and gaugino production Look for "Natural SUSY"
- Focusing more and more on non-CMSSM scenarii that make SUSY harder to find:
 - "Split", "compressed", R-parity violation
 - More exotic signatures:
 - → SUSY with low Missing ET
 - → Multi-jet resonances
 - → Long-Lived Particles (R-hadrons, staus) \rightarrow see next slides

Long-Lived Particles

Long-Lived Particles

Predicted by:

- → SUSY (R-parity violating or split/compressed mass spectra): stau, or gluino/stop hadronized into R-hadrons
- → Hidden Valley

Experimentally very diverse:

- → Depends widely on particle's properties: life-time, charge, decay
- → highly displaced vertices
- → highly ionizing (dE/dx)
- → slow (time-of-flight)
- → kinked tracks
- → disappearing tracks
- → out-of-time (wrt collision) decay

SUSY and Long-Lived Particles

Three main mechanisms

- R-Parity violation: Lifetime proportional to λ^2 , λ'^2 , $\lambda''^2 \rightarrow$ Displaced vertex if λ , λ' , $\lambda'' < 10^{-7}$
- Low $\Delta m(\chi_1^+-\chi_1^0)$ ~100 MeV in AMSB
 - Low $\Delta m(\tilde{g}/\tilde{q}-\tilde{\chi}_1^{\circ})$ for coloured particles
- Weak coupling to G in GMSB

- \rightarrow Low π emitted, kinked track
- → R-hadron (g̃ or q̃)
- → Stable sleptons

Long-Lived Particles: Disappearing Track

H. Bachacou, IRFU

Long-Lived Particles: Disappearing Track

- Look at events with at least 3 jets and large missing ET
- Discr. Variable: pT of tracks with less than 5 TRT hits

Long-Lived Particles: Decay in the Inner Detector

- R-hadrons (hadronized squarks or gluinos)
- Vertex outside the beampipe, in association with a high-pT muon
- Requires good understanding of tracking, detector passive material

Long-Lived Particle Vertex Triggers

· · · · · · · · · · · · · · · · · · ·	Typical decay length
 (b-tagging triggers) 	(1 mm - 5 cm)
Trackless jet trigger:	1 - 3 m
→ decays late in inner detector	
→ jet E T > 35 GeV	
→ no tracks with p T > 1 GeV near jet	
→ muon spectrometer activity	
Hadronic / EM (decays beyond the	2 - 3 m
EM calorimeter)	
→ jet ET > 35 GeV	
→ no tracks with p T > 1 GeV near jet	
$\rightarrow E_{had} / E_{EM} > 10$	
Muon spectrometer cluster trigger	4 - 7 m
\rightarrow 3 muon triggers close from each other \int	7
→ no jets, no tracks	

Long-Lived Particles Vertex Triggers

Long-Lived Particle Vertex Triggers

 Typical decay longth

	(b-tagging triggers)		(1 mm -	5 cm)	I
•	 Trackless jet trigger: → decays late in inner detector → jet E T > 35 GeV → no tracks with p T > 1 GeV near jet 		1 - 3 m		
•	 → muon spectrometer activity Hadronic / EM (decays beyond the EM calorimeter) → jet ET > 35 GeV → no tracks with p T > 1 GeV near jet → log(Ehad /E EM) > 1.0 		2 - 3 m		
•	 Muon spectrometer cluster trigger → 3 muon triggers close from each other → no jets, no tracks 	7	4 - 7 m		
				•	

Long-Lived Particles: Decay in the Muon Spectrometer

- Hidden-Valley theories predict a hidden sector coupled to the SM only through some heavy communicator → weakly coupled → long-lived particles
- Ex: $h \rightarrow h_v \rightarrow \pi_v \pi_v \rightarrow 4b$'s
- Life-time of π_v is unknown
- Look for 2 pairs of b-jets appearing outside the calorimeter.
- Sort of b-tagging with the Muon Spectrometer!

Long-Lived Particles: Vertex Reconstruction in the Muon Spectrometer

Long-Lived Particles: Decay in the Muon Spectrometer

H. Bachacou, IRFU

Backup

Sidenote: How to avoid bias

- "The easiest person to fool is yourself" R. Feynman
- You have two methods to estimate your background
 - → Method 1 predicts N(background events) = 2.2 ± 0.2 (sys.)
 - → Method 2 predicts N(background events) = 5 ± 3 (sys.)
- Case 1: choice made a priori (before looking at the data)
- Methods are compatible and method 1 gives best sensitivity => choose Method 1
- In the data, you observe N(events) = 7 events
- 3-sigma excess: you will not graduate this year

Sidenote: How to avoid bias

- "The easiest person to fool is yourself" R. Feynman
- You have two methods to estimate your background
 - → Method 1 predicts N(background events) = 2.2 ± 0.2 (sys.)
 - → Method 2 predicts N(background events) = 5 ± 3 (sys.)
- Case 2: choice made a posteriori
- You observe 7 events (and you must graduate before the end of the year)
- You decide to choose the most conservative method, just to be more conservative
- No excess: you just missed the Nobel price.