Les Détecteurs au LHC : Concept, comportement, performance, upgrades,....

D.Fournier - LAL/Orsay IN2P3/CNRS

Foreword of the Document presented to the Krakow meeting on European Strategy for Particle Physics (Sept 2012)

The ATLAS and CMS Collaborations

CMS and ATLAS have discovered a new Higgs-like boson with a mass of 125-126 GeV. This opens a new chapter in the history of particle physics.....

The discovery of the new boson was anchored by the final states with the best mass resolution, namely $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ (4e, 4 μ or 2e2 μ). These modes placed stringent requirements on detector design and performance.

Indeed, the ability to search for the SM Higgs boson over the fully allowed mass range played a crucial role in the conceptual design and benchmarking of the experiments and also resulted in excellent sensitivity to a wide array of signals of new physics at the TeV energy scale.

This demonstrates the great value of a bold early conceptual design, a systematic programme of development and construction, and a detailed understanding of detector performance, in confronting challenging physics goals.

- Concepts
- Design/comportement
- Performances
- Cas particulier de LHCb
- Upgrades

1) Concepts

- Aimant/systeme muons
- Contraintes dues au taux d'evenements et radiations (prix a payer / haute luminosité)
- Technologies "rapides et robustes"
- Trigger !!

1 GHz collisions(40MHz-bc-rate)-> ~300 Hz "on tape"

ATLAS et CMS : démarche commune

•Détecteur "4π" spectro à muons

- •Calorimétrie e,γ de precision [H→γγ]
- •Calorimétrie Jets et E_⊤miss
- Trajectographe+vertex (quark b, lepton τ)

•Déclenchement sans temps mort (pipeline séquencé à 25ns ou 40 MHz)

•Ecriture de ~300evt/s sur support pérenne

Coupe d'un secteur de CMS 5m 6m 0m 4m 1m 2m 3m 7m Key: Muon Electron Hadron (e.g. Pion) Photon Ð 0 μ Electromagnetic Calorimeter Hadron Superconducting Calorimeter Solenoid Iron return yoke interspersed Transverse slice with Muon chambers through CMS

> >10 ans de fonctionnement sans détérioration de performance / radiations

Experience CMS

22 m

Collaboration de >2000 chercheurs répartis dans ~170 Instituts

Experience ATLAS

Length : ~ 46 m Radius : ~ 12 m Weight : ~ 7000 tons

Muon Spectrometer ($|\eta|$ <2.7): air-core toroids +muon chambers \rightarrow trigger and measurement with momentum resolution < 10% up to $E_{\mu} \sim 1$ TeV

Inner Detector ($|\eta|$ <2.5, B=2T): Si Pixels, Si strips, Transition Radiation detector (straws) Precise tracking and vertexing, e/π separation Momentum resolution: $\sigma/p_T \sim 3.8 \times 10^{-4} p_T (GeV) \oplus 0.015$

EM calorimeter: Pb-LAr Accordion e/ γ trigger, identification and measurement E-resolution: σ/E ~ 10%/ \sqrt{E}

urementHAD calorimetry ($|\eta| < 5$): segmentation, hermeticityFe/scintillator Tiles (central), Cu/W-LAr (fwd)Trigger and measurement of jets and missing E_TE-resolution: $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$

Concept : choix du systeme magnétique

• Pionniers : ISR (années '70)

-SFM 2 dipoles inversés (diffractive physics)

-CCOR(Camilleri,DiLella,Lederman): Solenoide supra+drift chb

(visionnaire,..mais dépouillé...)

: SPEAR-PEP (années '70-80)

-MARKI : solenoide

-MARK II :solenoide (+ drfit chambers+ LAr)

- Plus recent ('80) SppS
 - -UA1 : dipole
 - -bon pouvoir d'analyse a 0 degre (Oz)
 - -effet sur les faisceaux
 - -pas de pouvoir magnetique selon Ox
 - -UA2 : pas de champ magnétique!
- Recent: Tevatron
 - -CDF: Solenoide
 - -D0 phase I: pas de champ central, toroide a fer/muons

phase II: ajout d'un solenoide dans le calorimetre central (sans champ magnetique central, les traces de basse impulsion ne sont pas faciles a distinguer de celles +energiques->vertexing peu efficace) • Recent:LEP,Hera ('90-2000)

-solénoides avec retour de fer (Aleph, Delphi, Opal, H1, Zeus)

-Grand solénoide sans retour de fer(L3)

(aussi proposé pour GEM/SSC)

Permet mesure des muons (BL^2)sans la diffuion multiple due au fer. mais champ de fuite.... \rightarrow toroide ATLAS

•Inconvenients du solenoide?

-pouvoir magnetique chute comme sin(θ) au dela limite geometrique

-A champ donné, l'epaisseur (pour tenir les contraintes mecaniques) croit comme le rayon-> devient "monstrueux" si le solenoide contient : tracking+calo EM+ calohad -sensibilité au champ elimine certains detecteurs(PM)

Aimant/système muons CMS

- Solenoide Rint= 2.95m full length=13 m weight(cold mass)=220 tons B=3.8 T (4-layer winding) ; η_{max} = 1.4 energie stockée : 2.6 GJ epaisseur radiale: 85 cm,~5X0, ~1.6 λ
- Retour de fer (10kT)

-intrumenté pour muon trigger, muon ID, muon momentum

MC

D.Fournier –GIF-Sept 2012

Mesure <u>dans</u> solenoide preponderante

Systeme magnétique/muons ATLAS

- "petit"solenoide,devant le calorimetre Rint=1.23m,full length=5.8m,w=5.7 tons
 B=2T,stored energy=0.04 GJ
 epaisseur 5cm, 0.6X0, 0.2λ
 retour de fer=had cal+girder
- Barrel toroid: 8 bobines L=25.3 m rad ext=5.3m w=830 t Bmax/min=2.5/0.2 T,stored energy=1.08 GJ
- EndCap toroid: 8 bobines L=25.3 m rad ext=4.5m w=2x240t Bmax/min=3.5/0.2 T, stored energy=2x0.2

Le "bending power" est ~constant jusqu'a η =~2.5

Le systeme toroidal a air permet la mesure des muons dans un environnement sans scattering multiple, et sans champ de fuite.

Necessite des mesures de position tres precises (alignement) a cause d'un "bending power" plus faible que retour de fer du solenoide de CMS

Atlas muon performance

Concept:Radiations(14 TeV // 10^34//1 an)

Region vers l'avant particulierement difficile.

CMS a choisi de deporter son Hadronic Forward calo a 11m du point de collision¹⁴

Technologies rapides et robustes?

• Tracking:

-Straw tubes/ATLAS aux plus grands rayons .Choix du gaz critique pour eviter la polymerisation sur les fils : Xe-CO2-(Xe pour TR)

-MSGCs considérées un temps pour CMS

- -Particulierement delicat: pixels/vertexing
- Technologie faisant l'unanimité: detecteurs Silicium: "diodes désertées"

 $Vdep=eN_D d^2/2\epsilon$

N_D=nb of donners/unit vol d=thickness ε permittivity of Si

- Calorimétrie:
 - -liquides nobles (Argon)
 - -Scintillateurs inorganiques (cristaux)
 - -fibres de quartz pour HF/CMS
- Performance du Calo EM "supercritique" pour H->2 photons
- canal a servi de "benchmark" pour le choix de la technologie
- A plus grand rayon, a cause des doses beaucoup plus faibles, un sandwich "plaque metallique-scintillateur plastique" a pu etre utilisé pour le calorimetre hadronique,dans ATLAS comme dans CMS.

2-Design et comportement 2-1 Détecteurs de traces (qques exemples) Atlas tracking

- 250 μm thick n⁺-in-n sensor with standard pixel dimension 50x400 μm
- 47232 pixels (46080 readout channels), 16 Front End chips bump bonded
- Flex hybrid glued to backside of sensor, voltage distribution, clock and configuration via MCC, event building via MCC, readout
- Radiation tolerance: 500 kGy, 10¹⁵ 1MeV n_{eq} cm⁻²
- 1744 modules in total

- Barrel Modules
 - 1 design
 - 80 μ m pitch
 - 2112 in total
- End-cap Modules
 - 5 different designs
 - 57 90 μ m pitch
 - 1976 in total
- 2 planar sensors glued onto a thermally conductive support
- 40 mrad stereo angle
- 1536 channels per module
- Binary readout, 132 bit deep buffer

Courant de fuite conforme au modèle (rescaling de +~15%) Inversion attendue pour fin 2012 (inner layer) Fonctionne globalement de facon tres satisfaisante: 96% modules actifs ; soucis/VECSEL résolu

2-1 CMS tracking (qques exemples)

En pratique, apres alignement on utilise le centroide du croisemnet des faisceaux et son rms (15 µm) comme erreur

Courant de fuite-CMS

Fair agreement between model and measurement, when a "cheating factor" of 1.7 is applied

2-1- effet des radiations: generation de defauts cristallins

•Courants de fuite: defauts proche de la bande de conduction génèrent des paires electron-trous

Les defauts créés sont principalement de type p:
→inversion de type si on est parti d'un type n(bulk)

La transition change de coté

CMS-Layer 0 "en cours d'inversion"

LHCb-VELO ...déja inversé localement

27

Bilan "tracking"

- Detecteurs de tracking/vertexing marchent remarquablement (cf performances plus tard)
- L'effet des radiations se manifeste comme attendu
- A moyen terme: augmentation des Vdep et des courants de fuite.Courant de fuite:
 - -croit rapidement avec la temp de fonctionnement
 - -génère du bruit prop sqrt(2el)
 - -génère de la chaleur (prop a IxVop)->risk of "runaway"
- Necessité de maintenir les detecteurs froids pendant les arrêts/upgrades apres une dose élevée... (LS1?)

Ombre au tableau: matiere...

ATLAS/JINST

CMS/JINST

2-2 Calorimètre à cristaux de PbWO4 dans CMS

Fraction of working channels stable in the last three years: EB 99.2%, EE 98.5%, ES 96.9%

Properties of scintillating crystals applied in particle physics experiments.

	NAI(Tl)	CsI(Tl)	CsI	BaF ₂	CeF ₃	BGO	PbWO ₄
Density [g cm ⁻³]	3.67	4.51	4.51	4.89	6.16	7.13	8.30
Radiation length [cm]	2.59	1.85	1.85	2.06	1.68	1.12	0.89
Molière radius [cm]	4.8	3.5	3.5	3.4	2.6	2.3	2.0
Interaction length [cm]	41.4	37.0	37.0	29.9	26.2	21.8	18.0
(dE/dx) _{mip} [MeV cm ⁻¹]	4.79	5.61	5.61	6.37	8.0	8.92	9.4
Refractive index [at l _{peak}]	1.85	1.79	1.95	1.50	1.62	2.15	2.2
Hygroscopicity	Yes	Slight	Slight	No	No	No	No
Emission spectrum, l _{peak}							
Slow component [nm]	410	560	420	300	340	480	430
Fast component [nm]			310	220	300		430
Light yield relative to NaI							
Slow component	100	45	5.6	21	6.6	9	0.3
Fast component			2.3	2.7	2.0		0.4
Decay time [ns]							
Slow component	230	1300	35	630	30	300	50
Fast component			6	0.9	9		10
	_			-			0 (

Electronique, résolution idéale

Test beam resolution(3x3),local:

$$\frac{\sigma(\mathrm{E})}{\mathrm{E}} = \frac{2.8\%}{\sqrt{\mathrm{E(GeV)}}} \oplus \frac{12\%}{\mathrm{E(GeV)}} \oplus 0.3\%$$

Terme constant devient dominant a haute energie \rightarrow calibration de la réponse de chaque cristal

Calibration initiale (rms at prod ~6%)

<u>A very intense 10 years long pre-calibration campaign.</u> Several orders of magnitude in energy: from 1 MeV of Co⁶⁰ source to 120 GeV electron beam.

Channel intercalibration with cosmic muons (only Barrel SMs)

(2006-2007)

Beam Splash: In September 2008 and November 2009, beam was circulated in LHC, stopped in collimators 150m away from CMS

Et finalement "in situ" avec données de collision+laser

Soucis : reculs nucléaires dans les APD

- •Origine: grand signal dans APD du a un proton de recul causé par une interaction de neutron(présent dans les gerbes hadroniques) avec noyau hydrogene (couche epoxy de protection??)
- •Un seul cristal touché, timing (un peu) off
- •Taux (ET>3 GeV/c) à 7 TeV : 3 10^-3/min bias [~1MHz à 5 10^33]

Effet des radiations : centres colorés

Suivi de la réponse par laser (440 et 796 nm)

Pulses laser envoyés continument pendant I ' abort-gap"

Effet de la correction laser sur le pic du Z

2-3 LAr EM-calo dans ATLAS

Signal rapide a partir d'un temps de dérive long ??... →profiter du front de montée rapide (ns) et utiliser la derivée

D.Fournier –GIF-Sept 2012

Structure "accordéon"

Layout

LAr-electronique

PS+3 samplings en profondeur Granularité: .025 x .1 .008 x .1 .025 x .025 main sampling .05 x .025

~180 000 canaux, sur 16 bits....(12 bts x 3 gains)

Test beam : résolution, linearité

Test beam : uniformité

Detecteur uniforme "par construction"

(vérifié aussi in-situ par mesure de drift time(gap dispersion)) →le systeme de calibration ne sert qu'a calibrer l'electronique En pratique: effets de la matiere,...

 →E=f(param_ij;S_ijk) param_ij déterminés par MC simulation performance verifiée par pic du Z (plus E/p,Jacobien,..)
Terme constant/2011 ~1% (jusqu'a 2% dans 1.5<|η|<1.8)

LAr calo: fonctionnement

- Fiabilité OTX : réglé(6% canaux perdus fin 2010, et récupérés apres acces)
- Faiblesses "locales" de tenue en tension (prévu.... 2 cotés du gap independants)
 - ~10% des voies HT opérées a une tension reduite (compensé par fudge factor-signal croit comme v^0.3). Petit nombre en cc debitent un courant (<2 mA) stable sur des mois.
- Noise bursts: probablement au moins 2 origines
 - -"spike of electromagnetic noise" emis par un autre detecteur
 - decharge HV quelque part dans LAr detector
- HV trips: chaque fois que L augmente, observe qques trips aléatoires qui ensuitent disparaissent peu a peu (like "scrubbing" for the beam)
 Tout ensemble correspond a une rejection de ~2% de Lint
- Cells "temporarily noisy" in PS,"HEC spikes" in HEC : pas tres bien compris. isolants qui se chargent? Traitement adapté "au cas par cas"

Effet des radiations: rien de visible(pour l'instant)

2-4 Trigger/DAQ

- Données échantillonnées /25ns et stockées dans un "pipe-line" de longueur>latence LVL1(~4mus)
- LVL1 activé en présence de 1 ou plusieurs "objets" d'intérêt
 - EM cluster (->electron ou photon) (ET>ET_th~25 GeV)
 - candidat muon/spectro (pT>pT_th~25 GeV)
 - Jet (EM+Hcal) ET>ET_th
 - -ETmiss>ETmiss_th

LVL1 rates : Atlas<75kHz, CMS<100kHz, LHCb<1MHz

- LVL2 : electron, photon, taus, dans une "Rol"
- EF: reconstruction complete, equivalente a off-line (CMS L1+EF = HLT)

Menus finals >~400 combinaisons

efficacité mesurée par "prescaling" et/ou "tag and probe"

2-4 Trigger-DAQ

CMS "menu" pour 3 10³³

Cellules et logique de déclenchement calorimétrique dans ATLAS

Cluster EM : •E(Σ 2 cell vertes)>Eth, •« rien » dans jaune •« rien » dans rose

Trigger	Offline Selection	Trigger S	election	L1 Rate	HLT Rate (Hz) 3×10³³
objects	(p _T thresholds in GeV)	L1 (GeV)	HLT (GeV)	(kHz) 3×10 ³³	
Single leptons	1 mu (e) > 35 (70)	14 (20)	24 (32)	6 (6)	34 (10)
Two leptons	2 mu (e)> 20, 10	2x3.5 (12,5)	17, 8	5 (7)	8 (5)
	mu & e > 20, 10	12,5 (0,12)	17,8 (8,17)	2 (2)	4 (9)
	2τ → h> 50	2x44	2x45	3	2
Two photons	2 photons> 40, 30	12,5	26,18	7	8
E _T ^{miss}	E _T ^{miss} > 150	30	120	4	3
Multi-jets	4 jets, > 80	4x28	4x70	2	9
1 jet + E _T ^{miss}	Both > 100	E _T ^{miss} >30	80, 80	4	9
3 jets + e or mu	Jets > 40, e/mu > 30/20	e/mu > 20/14	J=30, 25/17	7/5	3/1
Peak [rate				80	400

D.Fournier –GIF-Sept 2012

400 lignes au menu..

Demain...

- Performances
- LHCb (bref)
- Ugrades(bref)