Flavour Physics: in the Standard Model and beyond Ecole de Gif 2012 Physics at LHC 17 September - 21 September 2012, LAL Orsay, France

Tatsuya NAKADA Laboratory for High Energy Physics (LPHE) Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne, Switzerland

Plan of Lectures

- Direct-search versus Indirect-search
- Early History
- Standard Model Flavour Framework
- More of Weak Decay
- Current Status of $V_{\rm CKM}$
- Any Sign of New Physics
- Closer Look
- Epilogue

Of course going there...

Of course going there...

But you can study a lot from here before

Of course going there...

But you can study a lot from here before

And may be finding something new?

Of course going there...

But you can study a lot from here before

And may be finding something new?

Instruments can be improved and

Of course going there...

But you can study a lot from here before

And may be finding something new?

Instruments can be improved and

We see far beyond the direct reach...

Plan of Lectures

- Direct-search versus Indirect-search
- Early History
- Standard Model Flavour Framework
- More of Weak Decay
- Current Status of V_{CKM}
- Any Sign of New Physics
- Closer Look
- Epilogue

Start with Isospin (Heisenberg)...

 \rightarrow p and n are the doublets under SU(2) similarly π^+ , π^0 and π^- are the triplets under O(3)

 \downarrow

p and n (or π^+ , π^0 and π^-) are identical when switching off alectromagnetic interactions, i.e. nuclear forces

Start with Isospin (Heisenberg)...

 \rightarrow p and n are the doublets under SU(2) similarly π^+ , π^0 and π^- are the triplets under O(3)

"Strangeness" played a role in establishing the concept of flavour quantum numbers (Gell-Mann 56, Nishijima 55)

\downarrow

Response to the discovery of long living particles (1947) selection rule based on a quantum number which is conserved in strong and electromagnetic interactions but not conserved in weak interactions

Start with Isospin (Heisenberg)...

 \rightarrow p and n are the doublets under SU(2) similarly π^+ , π^0 and π^- are the triplets under O(3)

"Strangeness" played a role in establishing the concept of flavour quantum numbers (Gell-Mann 56, Nishijima 55)

"quark" in early 1960's (Gell-Mann, Ne'eman, Han-Nambu, Nishijima, Sakata, Zweig, etc.) SU(3) flavour symmetry: (u, d, s)

 \downarrow

Responding to the particle zoo, in particular the hyperons

discovered in 1964, Barmes et al.

Start with Isospin (Heisenberg)...

 \rightarrow p and n are the doublets under SU(2) similarly π^+ , π^0 and π^- are the triplets under O(3)

"Strangeness" played a role in establishing the concept of flavour quantum numbers (Gell-Mann 56, Nishijima 55)

"quark" in early 1960's (Gell-Mann, Ne'eman, Han-Nambu, Nishijima, Sakata, Zweig, etc.) SU(3) flavour symmetry: (u, d, s)

My private reflection Colour was needed for the constituent quark model: $\Delta^{++}(Q=+2, \text{Spin } 3/2 \text{ baron}) = (\mathbf{u} \uparrow, \mathbf{u} \uparrow, \mathbf{u} \uparrow).$ We know now: the spin of baryon is given little by the valence quark...?

Particle (K^0)-antiparticle (\overline{K}^0) mixing:

PHYSICAL REVIEW

VOLUME 97, NUMBER 5

MARCH 1, 1955

Behavior of Neutral Particles under Charge Conjugation

M. GELL-MANN,* Department of Physics, Columbia University, New York, New York

AND

A. PAIS, Institute for Advanced Study, Princeton, New Jersey (Received November 1, 1954)

Some properties are discussed of the θ^0 , a heavy boson that is known to decay by the process $\theta^0 \rightarrow \pi^+ + \pi^-$. According to certain schemes proposed for the interpretation of hyperons and K particles, the θ^0 possesses an antiparticle $\bar{\theta}^0$ distinct from itself. Some theoretical implications of this situation are discussed with special reference to charge conjugation invariance. The application of such invariance in familiar instances is surveyed in Sec. I. It is then shown in Sec. II that, within the framework of the tentative schemes under consideration, the θ^0 must be considered as a "particle mixture" exhibiting two distinct lifetimes, that each lifetime is associated with a different set of decay modes, and that no more than half of all θ^0 's undergo the familiar decay into two pions. Some experimental consequences of this picture are mentioned.

$$K^{0} \leftrightarrow \pi^{+}\pi^{-} \leftrightarrow \overline{K}^{0} \longrightarrow \begin{array}{c} K_{1} = \frac{K^{0} + K^{0}}{\sqrt{2}} \\ K_{2} = \frac{K^{0} - \overline{K}^{0}}{\sqrt{2}} \end{array}$$

under C symmetry, K₁ and K₂ two very different lifetimes

Why?

(later \mathscr{O} discovered \rightarrow change to CP conservation)

Ecole de Gif 2012, 17-21 September 2012, Orsay, France

Observation of Long-Lived Neutral V Particles*

Phys Rev Lett. 1956 K. Lande, E. T. Booth, J. Impeduglia, and L. M. Lederman,

Columbia University, New York, New York

AND

W. CHINOWSKY, Brookhaven National Laboratory, Upton, New York (Received July 30, 1956)

cloud chamber exposure at BNL

FIG. 2. Detection sensitivity for K mesons as function of lifetime. The composite curve is obtained with the spectra of reference 5. The point indicates the observed yield with a production cross section of $\sim 20 \ \mu b$ /sterad. lifetime for $\pi^+\pi^-$ decay already known to be ~10⁻¹⁰ sec

lifetime measurement for 3-body decays ($\pi\mu\nu$, $\pie\nu$, $\pi^+\pi^-\pi^0$) >10⁻⁹ sec

Establish two particle states: short-living, K_S , decays into 2π and long-living, K_L , decays into 3π , $\pi l\nu$: $K^0 - \overline{K}^0$ mixing

Ecole de Gif 2012, 17-21 September 2012, Orsay, France

Observation of Long-Lived Neutral V Particles*

Phys Rev Lett. 1956

K. LANDE, E. T. BOOTH, J. IMPEDUGLIA, AND L. M. LEDERMAN,

Columbia University, New York, New York

AND

This seemed to have triggered the idea of $v-\overline{v}$ mixing (not the v flavour mixing) by Pontecorvo in 1957

lifetime measurement for 3-body decays ($\pi\mu\nu$, $\pie\nu$, $\pi^+\pi^-\pi^0$) >10⁻⁹ sec

FIG. 2. Detection sensitivity for K mesons as function of lifetime. The composite curve is obtained with the spectra of reference 5. The point indicates the observed yield with a production cross section of $\sim 20 \ \mu b$ /sterad.

Establish two particle states: short-living, K_s , decays into 2π and long-living, K_L , decays into 3π , $\pi l \nu$: $K^0 - \overline{K}^0$ mixing

Ecole de Gif 2012, 17-21 September 2012, Orsay, France

Cabibbo theory (Phys. Rev. Let. 1963)

UNITARY SYMMETRY AND LEPTONIC DECAYS

Nicola Cabibbo CERN, Geneva, Switzerland (Received 29 April 1963)

Why $\Delta S=1$ decay process is suppressed? e.g. $\Gamma(K \rightarrow \mu\nu) << \Gamma(\pi \rightarrow \mu\nu)$ after correcting the phase space

\downarrow

Weak interaction charged current ($\Delta Q=1$) $J\mu = \cos\theta \times j_{\mu}(\Delta S=0) + \sin\theta \times j_{\mu}(\Delta S=1)$ θ : Cabibbo angle (unitary through $\cos^2\theta + \sin^2\theta = 1$)

Ecole de Gif 2012, 17-21 September 2012, Orsay, France

Cabibbo theory (Phys. Rev. Let. 1963)

UNITARY SYMMETRY AND LEPTONIC DECAYS

Nicola Cabibbo CERN, Geneva, Switzerland (Received 29 April 1963)

CP violating $K^0_L \rightarrow \pi^+\pi^-$ decays: 1964, J.H. Christenson et al.

Cabibbo theory (Phys. Rev. Let. 1963)

UNITARY SYMMETRY AND LEPTONIC DECAYS

Nicola Cabibbo CERN, Geneva, Switzerland (Received 29 April 1963)

CP violating $K^0_L \rightarrow \pi^+\pi^-$ decays: 1964, J.H. Christenson et al. This was beyond the comprehension of that time and no relation between the flavour considered:

e.g. Superweak model (Phys. Rev. Let. 1964)

VIOLATION OF CP INVARIANCE AND THE POSSIBILITY OF VERY WEAK INTERACTIONS*

L. Wolfenstein Carnegie Institute of Technology, Pittsburgh, Pennsylvania (Received 31 August 1964)

$$\mathbf{K}^{0} \xrightarrow{\text{```}\pi\pi"} \overline{\mathbf{K}}^{0} + \mathbf{K}^{0} \xrightarrow{\text{Super}} \overline{\mathbf{K}}^{0}$$

Glashow–Iliopoulos–Maiani mechanism (Phys Rev D 1970) Why $\Delta m_{\rm K}$ is so small and ${\rm K}_{\rm L} \rightarrow \mu^+ \mu^-$ very suppressed?

Weak Interactions with Lepton-Hadron Symmetry*

S. L. GLASHOW, J. ILIOPOULOS, AND L. MAIANI[†]

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02139 (Received 5 March 1970)

We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Mills theory is discussed.

Glashow–Iliopoulos–Maiani mechanism (Phys Rev D 1970) Why $\Delta m_{\rm K}$ is so small and ${\rm K}_{\rm L} \rightarrow \mu^+\mu^-$ very suppressed?

 Having 4th quark already considered in ~1964 (even with the name "charm") (Gell-Mann, Tarjanne and Teplitz, Hara, Bjørken and Glashow,)
 v_u discovered in 1962, Lederman, Schwartz and Steinberger,

$$\begin{pmatrix} u \\ d' \end{pmatrix} \begin{pmatrix} c \\ s' \end{pmatrix} \begin{pmatrix} v_e \\ e \end{pmatrix} \begin{pmatrix} v_\mu \\ \mu \end{pmatrix}$$

$$d' = d \cos\theta + s \sin\theta$$

$$s' = -d \sin\theta + s \cos\theta$$

Glashow–Iliopoulos–Maiani mechanism (Phys Rev D 1970) Why $\Delta m_{\rm K}$ is so small and ${\rm K}_{\rm L} \rightarrow \mu^+\mu^-$ very suppressed?

Having 4th quark already considered in ~1964 (even with the name "charm") (Gell-Mann, Tarjanne and Teplitz, Hara, Bjørken and Glashow,)
 ν_μ discovered in 1962, Lederman, Schwartz and Steinberger,

Glashow–Iliopoulos–Maiani mechanism (Phys Rev D 1970) Why $\Delta m_{\rm K}$ is so small and ${\rm K}_{\rm L} \rightarrow \mu^+ \mu^-$ very suppressed?

Estimation of $m_c \sim 1.5 \text{ GeV}$ (Gaillard and Lee, Phys Rev D 1974) $K_{I} \rightarrow \mu^{+}\mu^{-}$ suppressed $K_{\rm L} \rightarrow \gamma \gamma$ not suppressed $\Delta m_{\rm K} = m_{\rm L} - m_{\rm S}$ experimentally measured $d' = d \cos\theta + s \sin\theta$ d W^+ $\overline{\mathbf{S}}$ $\overline{u} \overline{c}$ $\overline{u} \overline{c}$ $s' = -d \sin\theta + s \cos\theta$ d S $\begin{array}{c|c} W^+ \\ W^- \end{array} \begin{array}{c} \nu_\mu \\ \mu^- \end{array} \end{array}$ d $\overline{\mathbf{S}}$ $\overline{u} \overline{c}$ $\overline{\mathbf{S}}$ $\overline{u} \overline{c}$ W⁺ d d u c S $Br(K^0 \rightarrow \mu^+ \mu^-) = F(m_0, ...)$ $\Delta m_{\rm K} = G(m_{\rm c},\ldots)$

Experimental Observation of a Heavy Particle J⁺

J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, Samuel C. C. Ting, and Sau Lan Wu Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

Y. Y. Lee Brookhaven National Laboratory, Upton, New York 11973 (Received 12 November 1974)

We report the observation of a heavy particle J, with mass m = 3.1 GeV and width approximately zero. The observation was made from the reaction $p + \text{Be} \rightarrow e^+ + e^- + x$ by measuring the e^+e^- mass spectrum with a precise pair spectrometer at the Brookhaven National Laboratory's 30-GeV alternating-gradient synchrotron.

chanism (Phys Rev D 1970)

J[−] very suppressed?

l and Lee, Phys Rev D 1974)

Charm discovery with hadron and e⁺e⁻ machines

Aubert et al. and Augustin et al., 1974

J.-E. Augustin, † A. M. Boyarski, M. Breidenbach, F. Bulos, J. T. Dakin, G. J. Feldman, G. E. Fischer, D. Fryberger, G. Hanson, B. Jean-Marie, † R. R. Larsen, V. Lüth, H. L. Lynch, D. Lyon, C. C. Morehouse, J. M. Paterson, M. L. Perl, B. Richter, P. Rapidis, R. F. Schwitters, W. M. Tanenbaum, and F. Vannucci‡
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

Discovery of a Narrow Resonance in e^+e^- Annihilation*

and

G. S. Abrams, D. Briggs, W. Chinowsky, C. E. Friedberg, G. Goldhaber, R. J. Hollebeek, J. A. Kadyk, B. Lulu, F. Pierre, § G. H. Trilling, J. S. Whitaker, J. Wiss, and J. E. Zipse Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, California 91720 (Received 13 November 1974)

We have observed a very sharp peak in the cross section for $e^+e^- \rightarrow \text{hadrons}$, e^+e^- , and possibly $\mu^+\mu^-$ at a center-of-mass energy of 3.105 ± 0.003 GeV. The upper limit to the full width at half-maximum is 1.3 MeV.

Glashow–Iliopoulos–Maiani mechanism (Phys Rev D 1970) Why $\Delta m_{\rm K}$ is so small and ${\rm K}_{\rm L} \rightarrow \mu^+\mu^-$ very suppressed?

Estimation of $m_c \sim 1.5 \text{ GeV}$ (Gaillard and Lee, Phys Rev D 1974)

Charm discovery with hadron and e⁺e⁻ machines

Aubert et al. and Augustin et al., 1974

Prog. Theor. Phys. Vol. 46 (1971), No. 5 A Possible Decay in Flight of a New Type Particle	Emulsion ex One event of	sposed in a JAL f X $\rightarrow \pi^0 + \text{one}$	Jet cargo plane charged hadron
Kiyoshi NIU, Eiko MIKUMO and Yasuko MAEDA*	hypo. $\tau(s)$	$\frac{\pi^0 \pi^{\text{charged}}}{2.2 \times 10^{-14}}$	$\frac{\pi^0 p}{3.6 \times 10^{-14}}$
Institute for Nuclear Study University of Tokyo	m(GeV)	1.78	2.95
*Yokohama National University August 9, 1971	Observation of $D \rightarrow K\pi^0$ decay in 1971?		

Ecole de Gif 2012, 17-21 September 2012, Orsay, France

Glashow–Iliopoulos–Maiani mechanism (Phys Rev D 1970) Why $\Delta m_{\rm K}$ is so small and ${\rm K}_{\rm L} \rightarrow \mu^+ \mu^-$ very suppressed?

Estimation of $m_c \sim 1.5 \text{ GeV}$ (Gaillard and Lee, Phys Rev D 1974)

Charm discovery with hadron and e⁺e⁻ machines

Aubert et al. and Augustin et al., 1974

Third quark family (Kobayashi and Maskawa, Prog. Theor. Phys. 1973)naturally introducesCP-Violation in the Renormalizable Theory
of Weak InteractionCP violationMakoto KOBAYASHI and Toshihide MASKAWA
Department of Physics, Kyoto University, Kyoto
(Received September 1, 1972)

In a framework of the renormalizable theory of weak interaction, problems of *CP*-violation are studied. It is concluded that no realistic models of *CP*-violation exist in the quartet scheme without introducing any other new fields. Some possible models of *CP*-violation are also discussed.

Glashow–Iliopoulos–Maiani mechanism (Phys Rev D 1970) Why $\Delta m_{\rm K}$ is so small and ${\rm K}_{\rm L} \rightarrow \mu^+ \mu^-$ very suppressed?

Estimation of $m_c \sim 1.5 \text{ GeV}$ (Gaillard and Lee, Phys Rev D 1974)

Charm discovery with hadron and e⁺e⁻ machines Aubert et al. and Augustin et al., 1974

Third quark family (Kobayashi and Maskawa, Prog. Theor. Phys. 1973) Flavour framework of the Standard Model established

Glashow–Iliopoulos–Maiani mechanism (Phys Rev D 1970) Why $\Delta m_{\rm K}$ is so small and ${\rm K}_{\rm L} \rightarrow \mu^+ \mu^-$ very suppressed?

Estimation of $m_c \sim 1.5 \text{ GeV}$ (Gaillard and Lee, Phys Rev D 1974)

Charm discovery with hadron and e⁺e⁻ machines Aubert et al. and Augustin et al., 1974

Third quark family (Kobayashi and Maskawa, Prog. Theor. Phys. 1973) Flavour framework of the Standard Model established

And b quark discovered in 1977

E288 experiment @ FNAL, S. Herb et al. in 1977 p(400 GeV) + Cu or Pt $\rightarrow \Upsilon(\rightarrow \mu^+ \mu^-) + X$

Glashow–Iliopoulos–Maiani mechanism (Phys Rev D 1970) Why $\Delta m_{\rm K}$ is so small and ${\rm K}_{\rm L} \rightarrow \mu^+ \mu^-$ very suppressed?

Estimation of $m_c \sim 1.5 \text{ GeV}$ (Gaillard and Lee, Phys Rev D 1974)

Charm discovery with hadron and e⁺e⁻ machines Aubert et al. and Augustin et al., 1974

Third quark family (Kobayashi and Maskawa, Prog. Theor. Phys. 1973) Flavour framework of the Standard Model established

And b quark discovered in 1977 (Herb et al., Phys. Rev. Lett. 1977)

Plan of Lectures

- Direct-search versus Indirect-search
- Early History
- Standard Model Flavour Framework
- More of Weak Decay
- Current Status of $V_{\rm CKM}$
- Any Sign of New Physics
- Closer Look
- Epilogue

 \Rightarrow

flavour eigenstatetates -non-diagonal mass matrix -strong and EM interactions -flavour conservation masseigenstates -diagonal mass matrix -weak interactions -flavour changing

flavour eigenstatetates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation

$$u_{L}, c_{L}, t_{L}$$

 $V_{ud}, V_{us}, V_{ub}, ..., ...$
 d_{L}, s_{L}, b_{L}
 $L \propto V_{ij} \overline{U}_{i} \gamma^{\mu} (1-\gamma_{5}) D_{j} W_{\mu}^{\dagger} + V_{ij}^{*} \overline{D}_{i} \gamma^{\mu} (1-\gamma_{5}) U_{j} W_{\mu}$
 \Rightarrow masseigenstates
-diagonal mass matrix
-weak interactions
-flavour changing
 $\overline{u}_{L}, \overline{c}_{L}, \overline{t}_{L}$
 W^{+}
 $+ V_{ud}^{*}, V_{us}^{*}, ...$
 $\overline{d}_{L}, \overline{s}_{L}, \overline{b}_{L}$

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation
 u_{L}, c_{L}, t_{L}
 $v_{ud}, v_{us}, v_{ub}, ..., ...$
 d_{L}, s_{L}, b_{L}
 $L \propto V_{ij} \overline{U}_{i} \gamma^{\mu} (1-\gamma_{5}) D_{j} W_{\mu}^{\dagger} + V_{ij}^{*} \overline{D}_{i} \gamma^{\mu} (1-\gamma_{5}) U_{j} W_{\mu}$
 $L_{CP} \propto V_{ij} \overline{D}_{i} \gamma^{\mu} (1-\gamma_{5}) U_{j} W_{\mu} + V_{ij}^{*} \overline{U}_{i} \gamma^{\mu} (1-\gamma_{5}) D_{j} W_{\mu}^{\dagger}$

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation
 u_L, c_L, t_L
 $V_{ud}, V_{us}, V_{ub}, ..., ...$
 d_L, s_L, b_L
 $L \propto V_{ij} \overline{U}_i \gamma^{\mu} (1-\gamma_5) D_j W_{\mu}^{\dagger} + V_{ij}^* \overline{D}_i \gamma^{\mu} (1-\gamma_5) U_j W_{\mu}$
 $L_{CP} \propto V_{ij} \overline{D}_i \gamma^{\mu} (1-\gamma_5) U_j W_{\mu} + V_{ij}^* \overline{U}_i \gamma^{\mu} (1-\gamma_5) D_j W_{\mu}^{\dagger}$
If $V_{ij}^* = V_{ij} \rightarrow L = L_{CP}$: i.e. CP conservation
flavour eigenstatetates -non-diagonal mass matrix -strong and EM interactions -flavour conservation

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

masseigenstates -diagonal mass matrix -weak interactions -flavour changing

> V_{CKM} : generally called CKM (mass mixing) matrix $V_{\text{CKM}}^{\dagger} \times V_{\text{CKM}} = 1$

flavour eigenstatetates -non-diagonal mass matrix -strong and EM interactions -flavour conservation

$$V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \sim \lambda & ? \\ \sim -\lambda & 1 - \frac{\lambda^2}{2} & ? \\ ? & ? & ? \\ ? & ? & ? \end{pmatrix}$$
$$\lambda = \sin \theta_{\text{Cabibbo}} \approx 0.22$$

masseigenstates -diagonal mass matrix -weak interactions -flavour changing

> V_{CKM} : generally called CKM (mass mixing) matrix $V_{\text{CKM}}^{\dagger} \times V_{\text{CKM}} = 1$

> > Can you show this explicitly by using the arbitrary quark phases and unitarity?

Pre KM, V_{CKM} was 2×2 p With 2×2 unitary matrix, one angle (1-2 rotation)

flavour eigenstatetates -non-diagonal mass matrix -strong and EM interactions -flavour conservation

$$V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \sim \lambda & ? \\ 2 & -\lambda & 1 - \frac{\lambda^2}{2} & ? \\ ? & ? & ? & ? \\ & ? & ? & ? \\ & & & \end{pmatrix} \begin{pmatrix} V_{\text{ckm}} & V_{\text{ckm}} \\ \gamma & \gamma & \gamma \\ \gamma & \gamma & ? \\ & & & & \end{pmatrix}$$

masseigenstates -diagonal mass matrix -weak interactions -flavour changing

> V_{CKM} : generally called CKM (mass mixing) matrix $V_{\text{CKM}}^{\dagger} \times V_{\text{CKM}} = 1$

Pre KM, V_{CKM} was 2×2 With 2×2 unitary matrix, one angle (1-2 rotation) With 3×3 matrix, three angles (1-2, 2-3, 1-3 rotations) and one phase

 \Rightarrow with three families, some of V_{ij} 's are intrinsically complex

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation -flavour changing
 $V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \\ \hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right), \ \hat{\eta} = \rho \left(1 - \frac{\eta^2}{2}\right) \end{pmatrix}$

 λ , A, ρ , η : Wolfenstein's parameterization Approximation with expansions in λ

NB $A \neq 0, \rho \neq 0, \eta \neq 0$ for CP violation

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation
 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \end{pmatrix}$
JADE Physics Letters B 1983
 $\tau < 1.4 \times 10^{-12}$ s (95% CL)
Theoretical predictions e.g. V. Barger et al.
 $0.8 \times 10^{-14} < \tau < 1.4 \times 10^{-13}$ sec, J. Phys. G 5, L147 (1979)
i.e. general prejudice was $|V_{cb}| \approx |V_{us}|$
Ecole de Gif 2012, 17-21 September 2012, Orsay, France
Flavour Physics, T. Nakada 41

MAC

Phys. Rev. Lett. 51, (1983) 1022 Lifetime of Particles Containing *b* Quarks $[1.8\pm0.6(stat.)\pm0.4(syst.)]\times10^{-12}$ sec.

Mark II

Phys. Rev. Lett. 51, (1983) 1316 Measurement of the Lifetime of Bottom Hadrons

Ecole de Gif 2012, 17-21 September 2012, Orsay, France

Flavour Physics, T. Nakada

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation
 $V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \\ \hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right), \ \hat{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right) \end{pmatrix}$

discovery of large b lifetime, i.e. small $|V_{cb}|$

MAC: Phys. Rev. Lett. 51, (1983) 1022 Mark II: Phys. Rev. Lett. 51, (1983) 1316

$$\tau_{\rm B} \sim 10^{-12} \text{ sec}, |V_{\rm cb}| \sim 0.05,$$

i.e. << $\sin \theta_{\rm Cabibbo} \sim 0.2$

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation
 $V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \\ \hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right), \ \hat{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right) \end{pmatrix}$

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation
 $V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \\ A\approx 0.8 & \hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right), \ \hat{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right) \end{pmatrix}$
Observation of b \Rightarrow u/v decays: $|V_{\text{ub}}| \neq 0$
(cf. like θ_{13} in v now)

Ecole de Gif 2012, 17-21 September 2012, Orsay, France

Flavour Physics, T. Nakada

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation
 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \\ \hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right), \ \hat{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right) \end{pmatrix}$

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation
 $V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \\ \hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right), \ \hat{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right) \end{pmatrix}$

Observation of $B^0 - \overline{B}^0$ oscillations: $|V_{td}| \neq 0$

 $\Delta m(B_d) \sim 100 \times \Delta m(K^0)$

Volume 192, number 1,2

PHYSICS LETTERS B

OBSERVATION OF B⁰-B⁰ MIXING

ARGUS Collaboration

Using the ARGUS detector at the DORIS II storage ring we have searched in three different ways for $B^0-\bar{B}^0$ mixing in Υ (4S) decays. One explicitly mixed event, a decay Υ (4S) $\rightarrow B^0B^0$, has been completely reconstructed. Furthermore, we observe a 4.0 standard deviation signal of 24.8 events with like-sign lepton pairs and a 3.0 standard deviation signal of 4.1 events containing one reconstructed $B^0(\bar{B}^0)$ and an additional fast $\ell^+(\ell^-)$. This leads to the conclusion that $B^0-\bar{B}^0$ mixing is substantial. For the mixing parameter we obtain $r=0.21\pm0.08$.

 $\Delta m_{\rm B} = G(|V_{\rm td}V_{\rm tb}|, m_{\rm t}, \dots)$

 $\Delta m(B_d) \sim 100 \times \Delta m(K^0)$

Volume 192, number 1,2

PHYSICS LETTERS B

25 June 1987

OBSERVATION OF B⁰-B⁰ MIXING

ARGUS Collaboration

Using the ARGUS detector at the DORIS II storage ring we have searched in three different ways for $B^0-\tilde{B}^0$ mixing in Υ (4S) decays. One explicitly mixed event, a decay Υ (4S) $\rightarrow B^0B^0$, has been completely reconstructed. Furthermore, we observe a 4.0 standard deviation signal of 24.8 events with like-sign lepton pairs and a 3.0 standard deviation signal of 4.1 events containing one reconstructed $B^0(\tilde{B}^0)$ and an additional fast $\ell^+(\ell^-)$. This leads to the conclusion that $B^0-\tilde{B}^0$ mixing is substantial. For the mixing parameter we obtain $r=0.21\pm0.08$.

$$\Delta m(B_d) \sim 100 \times \Delta m(K^0)$$

OBSERVATION OF B⁰-B⁰ MIXING

ARGUS Collaboration

Using the ARGUS detector at the DORIS II storage ring we have searched in three different ways for $B^0-\bar{B}^0$ mixing in Υ (4S) decays. One explicitly mixed event, a decay Υ (4S) $\rightarrow B^0B^0$, has been completely reconstructed. Furthermore, we observe a 4.0 standard deviation signal of 24.8 events with like-sign lepton pairs and a 3.0 standard deviation signal of 4.1 events containing one reconstructed $B^0(\bar{B}^0)$ and an additional fast $\ell^+(\ell^-)$. This leads to the conclusion that $B^0-\bar{B}^0$ mixing is substantial. For the mixing parameter we obtain $r=0.21\pm0.08$.

Ecole de Gif 2012, 17-21 September 2012, Orsay, France

Flavour Physics, T. Nakada

25 June 1987

ARGUS, 1987

$$\Upsilon(4S) \rightarrow B_d^{\ 0}\overline{B}_d^{\ 0}$$

$$\rightarrow B_d^{\ 0}B_d^{\ 0} \text{ or } \overline{B}_d^{\ 0}\overline{B}_d^{\ 0}$$

$$\rightarrow \ell^+ \ell^+ \text{ or } \ell^- \ell^-$$
24.8±7.6±3.8

T (D 100 (1007) 045

$$\Delta m(B_d) \sim 100 \times \Delta m(K^0)$$

Volume 192, number 1,2

DI

PHYSICS LETTERS B

 $m_{\rm t} > 50 \; {\rm GeV}/c^2$

OBSERVATION OF B⁰-B⁰ MIXING

ARGUS Collaboration

Using the ARGUS detector at the DORIS II storage ring we have searched in three different ways for $B^0-\tilde{B}^0$ mixing in Υ (4S) decays. One explicitly mixed event, a decay Υ (4S) $\rightarrow B^0B^0$, has been completely reconstructed. Furthermore, we observe a 4.0 standard deviation signal of 24.8 events with like-sign lepton pairs and a 3.0 standard deviation signal of 4.1 events containing one reconstructed $B^0(\tilde{B}^0)$ and an additional fast $\ell^+(\ell^-)$. This leads to the conclusion that $B^0-\tilde{B}^0$ mixing is substantial. For the mixing parameter we obtain $r=0.21\pm0.08$.

LEP electroweak fit 150~210 GeV/*c*²

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation
 $V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \\ \hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right), \ \hat{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right) \end{pmatrix}$

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation
 $V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \\ \lambda \approx 0.8 & \hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right), \ \hat{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right) \end{pmatrix}$

My private reflection:

With Δm_d and ϵ_K (CPV in K- \overline{K} oscillation), CPV in $B_d \rightarrow J/\psi K_S$ could be predicted without m_t mass, which was still unknown at that time. Uncertainty was due to hadronic parameters: $B_d f_d^2/B_K$. This provided a benchmark *L* for B-factories under consideration.

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation
 $V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \\ \hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right), \ \hat{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right) \end{pmatrix}$
 $\rho^2 + \eta^2 \approx 0.3$
 $(1 - \hat{\rho})^2 + \hat{\eta}^2 \approx 0.9$

It shows clearly $\eta \neq 0$, i.e. CPV!

flavour eigenstatetates
$$\Rightarrow$$
 masseigenstates
-non-diagonal mass matrix
-strong and EM interactions
-flavour conservation
 $V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \hat{\rho} - i\hat{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \\ \hat{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right), \ \hat{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right) \end{pmatrix}$
 $\rho^2 + \eta^2 \approx 0.3$
 $(1 - \hat{\rho})^2 + \hat{\eta}^2 \approx 0.9$

b→sγ decays and $B_s^0 - \overline{B}_s^0$ oscillations for $|V_{ts}|$

Plan of Lectures

- Direct-search versus Indirect-search
- Early History
- Standard Model Flavour Framework
- More of Weak Decay
- Current Status of $V_{\rm CKM}$
- Any Sign of New Physics
- Closer Look
- Epilogue

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) quark decay

$$b \rightarrow c + W^{-}(\rightarrow \overline{c}s)$$
 $b \xrightarrow{\kappa} V^{-A} \xrightarrow{c}s$

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$)

quark decay to hadron decay

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) Theoretical tool to describe the decay amplitude for $M \rightarrow F$ $A(M \rightarrow F) = \langle F | H_{\text{effective}}^{\text{weak decay}} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i \xi_{\text{CKM}}^i C_i(\mu) \langle F | Q_i(\mu) | M \rangle$ Q_i : quark operators

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$)

lowest order weak interactions ($\Delta F = 1$)

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$)

lowest order weak interactions ($\Delta F = 1$)

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_j c_j)_{V-A}$

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) lowest order weak interactions ($\Delta F = 1$)

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) lowest order weak interactions ($\Delta F = 1$)

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_j c_j)_{V-A}$ No-QCD tree diagram

+ one gluon = tree diagrams with two different colour structures

 $(\overline{c}_{i} b_{i})_{V-A} (\overline{s}_{j} c_{j})_{V-A}$ $(\overline{c}_{j} b_{i})_{V-A} (\overline{s}_{i} c_{j})_{V-A}$

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) lowest order weak interactions ($\Delta F = 1$)

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$ No QCD tree diagram

+ one gluon = tree diagrams with two different colour structures $(\overline{s_i} \, b_i)_{V-A} (\overline{c_i} \, c_j)_V$

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$ $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$

+ gluon penguins with two different colour structure (gluon = V)

$$(\overline{s}_{j} b_{i})_{V-A} (\overline{c}_{i} c_{j})_{V}$$

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) lowest order weak interactions ($\Delta F = 1$)

- $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$ No QCD tree diagram
- + one gluon tree diagrams with two different colour structure

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$ $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$

$$(\overline{s_i} \, b_i)_{V-A} \, (\overline{c_j} \, c_j)_{V-A}$$

 $(\overline{s_i} b_i)_{V-A} (\overline{c_i} c_j)_{V+A}$ + gluon penguins with two different colour structure (gluon = V) $\stackrel{\sim}{\to} \text{split to}(V-A) + (V+A) (\overline{s_j} b_i)_{V-A} (\overline{c_i} c_j)_{V-A}$

(needed for the Q² evolution) $(\overline{s_i} b_i)_{V-A} (\overline{c_i} c_j)_{V+A}$

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) lowest order weak interactions ($\Delta F = 1$)

operators

 Q_5

 Q_4

 Q_6

$(\overline{c}_i b_i)_{V-A} (\overline{s}_j c_j)_{V-A}$ No QCD tree diagram

+ one gluon tree diagrams with two different colour structures

$$(\overline{c}_i b_i)_{V-A} (\overline{s}_j c_j)_{V-A} \qquad Q_2$$

$$(\overline{c}_{j} b_{i})_{V-A} (\overline{s}_{i} c_{j})_{V-A} \qquad Q_{1}$$

ures
$$(\overline{s_i} b_i)_{V-A} (\overline{c_j} c_j)_{V-A} \qquad Q_3$$

+ gluon penguins with two different colour structure (gluon = V) \rightarrow split to (V-A) + (V+A) $(\overline{s_j} b_i)_{V-A} (\overline{c_i} c_j)_{V-A}$ (needed for the Q² evolution) $(\overline{s_i} b_i)_{V-A} (\overline{c_i} c_j)_{V+A}$

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) the second order electroweak interactions ($\Delta F = 1$)

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) the second order electroweak interactions ($\Delta F = 1$)

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) also the second order electroweak interactions, $\Delta F = 2$

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) Theoretical tool to describe the decay amplitude for M \rightarrow F $A(M \rightarrow F) = \langle F | H_{\text{effective}}^{\text{weak decay}} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i \xi_{\text{CKM}}^i C_i(\mu) \langle F | Q_i(\mu) | M \rangle$

 $G_{\rm F}$: Fermi constant,

- $Q_i(\mu)$: Local four-fermion operators evaluated at energy scale μ calculable in perturbation
- $C_i(\mu)$: Coupling constants for $Q_i(\mu)$ at energy scale μ i.e. Wilson coefficient, calculable in perturbation
- $<\!\!F|Q_i(\mu)|M\!\!>$: Hadronic matrix element long distance effect
- ξ_i^{CKM} : Combination of the CKM elements the ultimate interest for Flavour Physics extraction of the CKM matrix, search for new physics
More on Weak Decays

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$)

Theoretical tool to describe the decay amplitude for $M \rightarrow F$

$$A(M \rightarrow F) = \left\langle F \middle| H_{\text{effective}}^{\text{weak decay}} \middle| M \right\rangle = \frac{G_{\text{F}}}{\sqrt{2}} \sum_{i} \xi_{\text{CKM}}^{i} C_{i}(\mu) \left\langle F \middle| Q_{i}(\mu) \middle| M \right\rangle$$

- Comparing the full and effective theory at $\mu = m_W$ $\rightarrow C_i(\mu = m_W)$

- Scale C_i down to $\mu \approx 1$ GeV (K), m_c (D), m_b (B) $C_i(\mu) = U_{ij}(\mu, \mu = m_W)C_j(\mu = m_W)$

 U_{ij} not diagonal \Rightarrow mixing of the operators in the evolution

 Evaluate <*F*|*Q_i*(μ)|*M*> (hadronic matrix element) with non perturbative methods at μ lattice, HQET, QCD sum rule, etc. major source of uncertainties

More on Weak Decays

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$)

Theoretical tool to describe the decay amplitude for $M \rightarrow F$ $A(M \rightarrow F) = \langle F | H_{\text{effective}}^{\text{weak decay}} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i \xi_{\text{CKM}}^i C_i(\mu) \langle F | Q_i(\mu) | M \rangle$

- Evaluate $\langle F|Q_i(\mu)|M \rangle$ (hadronic matrix element)

One decay constant $f_{\rm B}$

Form factors $f(q^2)$: functions of momentum transfer $B \rightarrow$ hadrons depend on the hadrons

Many theoretical models: ultimately the lattice QCD

Plan of Lectures

- Direct-search versus Indirect-search
- Early History
- Standard Model Flavour Framework
- More of Weak Decay
- Current Status of $V_{\rm CKM}$
- Any Sign of New Physics
- Closer Look
- Epilogue

Current Status of $V_{\rm CKM}$

Can be extract from decay widths generated by the tree, penguin, and box processes

examples of semileptonic and leptonic decays

Current Status of
$$V_{\text{CKM}}$$

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

First 2×2 sub-matrix: four $|V_{ij}|$ are measured by nucleus, pion, kaon and charm hadron decays It is "almost" unitary with one single parameter $\lambda (\equiv \sin \theta_{\text{Cabibbo}}) = |V_{\text{us}}| = 0.2246 \pm 0.0012 \text{ (PDG 2012)}$

$$V_{\rm CKM} \approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ -\lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

Current Status of
$$V_{\text{CKM}}$$

 $V_{\text{CKM}} \approx \begin{pmatrix} 1 & \lambda & V_{\text{ub}} \\ -\lambda & 1 & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix}$

 $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays

 $|V_{cb}| = \begin{cases} (41.9 \pm 0.7) \times 10^{-3} \text{ inclusive decays} \\ (39.6 \pm 0.9) \times 10^{-3} \text{ exclusive decays} \\ -\text{errors limited theoretically-} \end{cases} 2.0\sigma \text{ discrepancy} \\ (PDG 2012) \end{cases}$

 $|V_{ub}| = \begin{cases} (4.41 \pm 0.22) \times 10^{-3} \text{ inclusive decays} \\ (3.23 \pm 0.31) \times 10^{-3} \text{ exclusive decays} \\ -\text{errors very limited theoretically-} \end{cases} 3.1\sigma \text{ discrepancy}$

exclusives systematically smaller than exclusives...?

Current Status of
$$V_{\text{CKM}}$$

 $V_{\text{CKM}} \approx \begin{pmatrix} 1 & \lambda & V_{\text{ub}} \\ \neg \lambda & 1 & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix}$

 $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention

Current Status of
$$V_{\text{CKM}}$$

$$V_{\rm CKM} \approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ \neg \lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

 $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention arg V_{ub} by CP violation in B \rightarrow DK

arg $V_{\rm ub}$ so called angle " γ "

two decay diagrams producing identical final states

$$V_{\rm cb}V_{\rm us}^{*}$$

arg $V_{\rm ub}$ so called angle " γ "

two decay diagrams producing identical final states

arg $V_{\rm ub}$ so called angle " γ "

two decay diagrams producing identical final states

$$V_{ub}V_{cs}^*$$

K⁻

u

arg $V_{\rm ub}$ so called angle " γ "

two decay diagrams producing identical final states

Current Status of $V_{\rm CKM}$ arg $V_{\rm ub}$ so called angle " γ " two decay diagrams producing identical final states K⁻ **K**+ $V_{\rm cb}V_{\rm us}^*V_{\rm cd}^*V_{\rm us}$ h π interfere ū U b K⁺ F(arg) $V_{\rm ub}V_{\rm cs}^*V_{\rm ud}^*V_{\rm cs}$ π^{-} u Br $(B^{-} \rightarrow [K^{+}\pi^{-}]_{D-mass} K^{-}) \neq Br (B^{+} \rightarrow [K^{-}\pi^{+}]_{D-mass} K^{+})$

Current Status of $V_{\rm CKM}$

arg $V_{\rm ub}$ so called angle " γ "

two decay diagrams producing identical final states

86

two processes interfere \rightarrow CPV \propto sin 2argV_{td}

Flavour Physics, T. Nakada

Flavour Physics, T. Nakada

two processes interfere \rightarrow CPV $\propto \sin 2 \arg V_{ts}$ not yet well measured

two processes interfere \rightarrow CPV $\propto \sin 2 \arg V_{ts}$ -0.044 $^{+0.090}_{-0.085}$ (HFAG 2012)

A from
$$|V_{cb}|$$
, ρ and η from
$$\begin{bmatrix} |V_{ub}| \text{ and arg } V_{ub} \\ |V_{tb}| \text{ and arg } V_{tb} \\ |V_{ub}| \text{ and } |V_{tb}| \\ |V_{ub}| \text{ and } |V_{tb}| \\ |V_{td}| \text{ and } |V_{ub}| \end{bmatrix}$$
many solutions i.e. consistency can be checked

Current Status of $V_{\rm CKM}$

- BABAR completed in 2008 and Belle completed in 2010 ~1.2 ab⁻¹ data, i.e. ~1.3×10⁹ BB
- CDF and D0 completed in 2011, ~20 fb⁻¹ data
- LHCb running, 7 TeV in 1010+2011 (1 fb⁻¹), 8 TeV in 2012

- To look for New Physics, extraction of (λ, A, ρ, η) with the processes totally dominated by the SM
 → tree decays
 - $-\lambda$ and *A* are already from the tree decay modes
 - (ρ, η) from the tree decays: $|V_{ub}/V_{cb}|$ from the semileptonic decays arg V_{ub} from B→DK* (interference between b→c and b→u)

 $B^0 \rightarrow "D" K^{*0}$ and "D" K^{*0} with "D" decays

Time dependent CP asymmetries of $B_s(t=0) \rightarrow D_s^{\pm} K^{\mp}$ vs CP conjugated state LHCb

- To look for New Physics, extraction of (λ, A, ρ, η) with the processes totally dominated by the SM
 → tree decays
 - $-\lambda$ and *A* are already from the tree decay modes
 - (ρ, η) from the tree decays: $|V_{ub}/V_{cb}|$ from the semileptonic decays arg V_{ub} from B→DK* (interference between b→c and b→u)

$$B^{\pm} \rightarrow "D" K^{\pm}$$
, with "D" $\rightarrow K^{+}\pi^{-}$ and $K^{-}\pi^{+}$
Can you demonstrate these?

 $B^0 \rightarrow "D" K^{*0}$ and "D" K^{*0} with "D" decays

Time dependent CP asymmetries of $B_s(t=0) \rightarrow D_s^{\pm} K^{\mp}$ vs CP conjugated state LHC

- To look for New Physics, extraction of (λ, A, ρ, η) with the processes totally dominated by the SM \rightarrow tree decays
 - $-\lambda$ and *A* are already from the tree decay modes
 - (ρ, η) from the tree decays: $|V_{ub}/V_{cb}|$ from the semileptonic decays arg V_{ub} from B \rightarrow DK*
- Should be compared with (ρ, η) from the loop processes:
 - $|V_{td}|$ from Δm_d and $\arg V_{td}$ from CPV in $B_d \rightarrow J/\psi K_S$
 - Combination of $\varepsilon_{\rm K}$ with $|V_{\rm td}|$ or CPV in $B_{\rm d} \rightarrow J/\psi K_{\rm S}$

- To look for New Physics, extraction of (λ, A, ρ, η) with the processes totally dominated by the SM \rightarrow tree decays
 - $-\lambda$ and *A* are already from the tree decay modes
 - (ρ, η) from the tree decays: $|V_{ub}/V_{cb}|$ from the semileptonic decays arg V_{ub} from B \rightarrow DK*
- Should be compared with (ρ, η) from the loop processes:
 - $|V_{td}|$ from Δm_d and $\arg V_{td}$ from CPV in $B_d \rightarrow J/\psi K_S$
 - Combination of $\varepsilon_{\rm K}$ with $|V_{\rm td}|$ or CPV in $B_{\rm d} \rightarrow J/\psi K_{\rm S}$
- Further improvement with the LHCb data expected

No sign of new physics in B→µ⁺µ⁻
 Now results dominated by the LHC experiments

Mode	Limit	ATLAS	CMS	LHCb 2010	LHCb 2011	Combined
$B_s^0 \to \mu^+ \mu^- \ (10^{-9})$	Bkg Only	23	(3.6)	65	3.4	2.3
	Bkg+SM		8.4		7.2	6.1
	Obs	22	7.7(7.2)	56	4.5	4.2
$B^0 \to \mu^+ \mu^- \ (10^{-10})$	Bkg Only	-	(13)	180	11	7.3
	Bkg+SM	_	16			
	Obs	—	14 (16)	150	10	8.1

95% CL upper limit

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)_{\rm SM} = (3.2 \pm 0.2) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-)_{\rm SM} = (1.0 \pm 0.1) \times 10^{-10}$$

Plan of Lectures

- Direct-search versus Indirect-search
- Early History
- Standard Model Flavour Framework
- More of Weak Decay
- Current Status of $V_{\rm CKM}$
- Any Sign of New Physics
- Closer Look
- Epilogue

Any Sign of New Physics?

• There exist solid observations for physics beyond the Standard Model

Any Sign of New Physics?

• There exist solid observations for physics beyond the Standard Model Neutrino oscillations \rightarrow in the SM, $m_v = 0$ by definition

There exist solid observations for physics beyond the Standard Model Neutrino oscillations Dark matter → no candidate particle in the SM

• There exist solid observations for physics beyond the **Standard Model** Neutrino oscillations Dark matter $N_{\rm B} / N_{\gamma} = 10^{-10} \rightarrow$ the SM CPV not sufficient

Bullet Galaxy Clusters

The Horn Antenna Bell Telephone Laboratory

• There exist solid observations for physics beyond the Standard Model Neutrino oscillations Dark matter $N_{\rm B} / N_{\gamma} = 10^{-10}$

S-KAMIOKANDE

Bell Telephone Laboratory

The Horn Antenna

• And the SM includes no gravity, has too many parameters, requires some fine tunings, etc.

• There exist solid observations for physics beyond the **Standard Model** Neutrino oscillations Dark matter $N_{\rm B}$ / $N_{\rm y}$ =10⁻¹⁰

S-KAMIOKANDE

Bullet Galaxy Clusters

The Horn Antenna **Bell Telephone Laboratory**

And the SM includes no gravity, has too many parameters, requires some fine tunings, etc. However, we do not know whether the energy scale for new physics accessible to us...

In general, new physics can enter in the loop diagrams as virtual states

Plan of Lectures

- Direct-search versus Indirect-search
- Early History
- Standard Model Flavour Framework
- More of Weak Decay
- Current Status of V_{CKM}
- Any Sign of New Physics
- Closer Look
- Epilogue

In general, new physics can enter in the loop diagrams as virtual states

In general, new physics can enter in the loop diagrams as

In general, new physics can enter in the loop diagrams as

→ Minimal Flavour Violation (same origin for all FSB)?

Should be still visible in the Br. and Lorentz structure

- If one looks closer, any hint of discrepancies?

 - "sin 2\beta" extracted from CPV in $B_d \rightarrow J/\psi K_S$ somewhat small $|V_{ub}|$ extracted from $B \rightarrow \tau \nu$ decays larger than $|V_{ub}|$ extracted from the semileptonic decays.

- If one looks closer, any hint of discrepancies?
 - "sin 2\beta" extracted from CPV in $B_d \rightarrow J/\psi K_S$ somewhat small
 - $|V_{ub}|$ extracted from $B \rightarrow \tau \nu$ decays larger than $|V_{ub}|$ extracted from the semileptonic decays.
- This could be due to
 - 1. Problem with extracting $|V_{ub}/V_{cb}|$ due to the hadronic uncertainties

- If one looks closer, any hint of discrepancies?
 - "sin 2 β " extracted from CPV in $B_d \rightarrow J/\psi K_S$ somewhat small $|V_{ub}|$ extracted from $B \rightarrow \tau \nu$ decays larger than $|V_{ub}|$ extracted from
 - the semileptonic decays.
- This could be due to
 - 1. Problem with extracting $|V_{ub}/V_{cb}|$ due to the hadronic uncertainties OR
 - 2. New Physics in B⁰-B⁰ oscillations and charged Higgs in $B \rightarrow \tau v$

*IV*_{cb}I and *IV*_{ub}I
Errors are dominated by the theoretical uncertainties in the strong interaction for the semleptonic decays.
⇒ can be reduced by studying the decay kinematics, e.g. lepton momentum, hadronic-mass distribution, etc. with higher statistics in a clean environment

$|V_{cb}|$ and $|V_{ub}|$

Errors are dominated by the theoretical uncertainties in the strong interaction for the semleptonic decays. ⇒can be reduced by studying the decay kinematics, e.g. lepton momentum, hadronic-mass distribution, etc. with higher statistics in a clean environment

Case for Super B Factories:

$|V_{cb}|$ and $|V_{ub}|$

Errors are dominated by the theoretical uncertainties in the strong interaction for the semleptonic decays. ⇒can be reduced by studying the decay kinematics, e.g. lepton momentum, hadronic-mass distribution, etc. with higher statistics in a clean environment

Case for Super B Factories: $|V_{ub}|$ from $B^{\pm} \rightarrow \tau^{\pm} \nu$ error still statistics limited. Recent Belle: $(1.14 \pm 0.23) \times 10^{-4}$, only 1.3 σ away from SM Another case Super B Factories

$|V_{cb}|$ and $|V_{ub}|$

Errors are dominated by the theoretical uncertainties in the strong interaction for the semleptonic decays. ⇒can be reduced by studying the decay kinematics, e.g. lepton momentum, hadronic-mass distribution, etc. with higher statistics in a clean environment

Case for Super B Factories: $|V_{ub}|$ from $B^{\pm} \rightarrow \tau^{\pm} \nu$ error still statistics limited. Recent Belle: $(1.14 \pm 0.23) \times 10^{-4}$, only 1.3 σ away from SM Another case Super B Factories

 $Br(B \rightarrow D^{(*)}\tau v)$ by BABAR: larger than SM by ~3.4 σ ,
also due to charged Higgs? (but only complicated ones)Looking forward to the Belle analysisEcole de Gif 2012, 17-21 September 2012, Orsay, FranceFlavour Physics, T. Nakada

124

• CPV in the B_s system: used to be "almost" untouched territory: Started with CDF and D0

• CPV in the $B_d - \overline{B}_d$ and $B_s - \overline{B}_s$ oscillations: SM small D0 measures possibly large CPV for B_s

• CPV in the $B_d - \overline{B}_d$ and $B_s - \overline{B}_s$ oscillations: SM small D0 measures possibly large CPV for B_s

Not confirmed by by LHCb 1 fb⁻¹ data Much more data in future

• Lorentz structure of electroweak penguin current with $B \rightarrow K^{*0}\mu^+\mu^-$ decays: example: A_{FS} of the muon pairs v.s. $m^2(\mu^+\mu^-)$ BABAR+BELLE+CDF: inconclusive

• Lorentz structure of electroweak penguin current with $B \rightarrow K^{*0}\mu^+\mu^-$ decays: example: A_{FS} of the muon pairs v.s. $m^2(\mu^+\mu^-)$ BABAR+BELLE+CDF: inconclusive LHCb (1 fb⁻¹) good agreement with SM

• Up-type quarks: D-meson system: D-D mixing observed, SM prediction difficult

• Up-type quarks: D-meson system: D-D mixing observed, SM prediction difficult CPV in D-D oscillations not seen, small in SM

No CPV in oscillations |p/q|=1 $\arg(p/q) = 0$

• Up-type quarks: D-meson system: D-D mixing observed, SM prediction difficult CPV in D-D oscillations not seen, small in SM CPV in the decay amplitudes: ???

 Up-type quarks: D-meson system: D-D mixing observed, SM prediction difficult CPV in D-D oscillations not seen, small in SM CPV in the decay amplitudes: ???

> $\Delta A_{CP} = A_{CP}(K^{+}K^{-}) - A_{CP}(\pi^{+}\pi^{-})$ LHCb -0.82 ± 0.24 (0.62 fb⁻¹) CDF -0.62 ± 0.23 Belle -0.87 ± 0.41 SM expectation was $O(10^{-3})$ could be stretched to ~5×10⁻³ ?

• Up-type quarks: D-meson system: D-D mixing observed, SM prediction difficult CPV in \overline{D} - \overline{D} oscillations not seen, small in SM CPV in the decay amplitudes: ???

More data with LHCb will be interesting c.f. very clean tagged D signal

1860

1880

1900 m(π'π+) (MeV/c2)

1840

1820

And Bigger Picture

- Kaon physics $K^+ \rightarrow \pi^+ \nu \nu$, $K^0_L \rightarrow \pi^0 \nu \nu$ testing of MFV
- Charged lepton flavour violation search SUSY?
- And even more fundamental... Quark-lepton flavour unification? Origin of flavour structure?

Plan of Lectures

- Direct-search versus Indirect-search
- Early History
- Standard Model Flavour Framework
- More of Weak Decay
- Current Status of V_{CKM}
- Any Sign of New Physics
- Closer Look
- Epilogue

Epilogue

Synergy between the direct and indirect search

Black line: CMS exclusion limit with 1.1 fb⁻¹ data Red line: CMS exclusion limit with 4.4 fb⁻¹ data New LHCb limits for BR($B_s \rightarrow \mu^+ \mu^-$) and BR($B_d \rightarrow \mu^+ \mu^-$)

Superlso v3.2+

Nazila Mahmoudi

Implications

CERN, March 30, 2012

Ecole de Gif 2012, 17-21 September 2012, Orsay, France

Flavour Physics, T. Nakada

Epilogue Synergy between the direct and indirect search

Red line: CMS exclusion limit with 4.4 fb⁻¹ data New LHCb limits for BR($B_s \rightarrow \mu^+\mu^-$) and BR($B_d \rightarrow \mu^+\mu^-$)

Superlso v3.2+

Nazila Mahmoudi

CERN, March 30, 2012

Ecole de Gif 2012, 17-21 September 2012, Orsay, France

Flavour Physics, T. Nakada

B	y the middle of 20	Epilogu 12 end of	ie f 2017
	ATLAS CMS high $p_{\rm T}$ physics	BSM	
	LHCb flavour physics	Only SM	
	Particle Physics	\odot	

Epilogue By the middle of 2012 ... end of 2017

$\begin{array}{c} \text{ATLAS} \\ \text{CMS} \\ \text{high } p_{\text{T}} \text{ physics} \end{array}$	BSM	Only SM
LHCb flavour physics	Only SM	BSM
Particle Physics	\odot	\odot

Epilogue By the middle of 2012 ... end of 2017

$\begin{array}{c} \text{ATLAS} \\ \text{CMS} \\ \text{high } p_{\text{T}} \text{ physics} \end{array}$	BSM	Only SM	BSM
LHCb flavour physics	Only SM	BSM	BSM
Particle Physics	\odot	\odot	\odot

Epilogue By the middle of 2012 ... end of 2017

$\begin{array}{c} \text{ATLAS} \\ \text{CMS} \\ \text{high } p_{\text{T}} \text{ physics} \end{array}$	BSM	Only SM	BSM	
LHCb flavour physics	Only SM	BSM	BSM	
Particle Physics	\odot	\odot	\odot	

Oh, no more space left...

Epilogue

In any case,

Exciting time is ahead of us all.