
Go tour

Sébastien Binet

2012-05-31

Sébastien Binet (LAL) Go tour 2012-05-31 1 / 40

Outline

Motivations
Bootstrap, setup environment
Full speed

Sébastien Binet (LAL) Go tour 2012-05-31 2 / 40

Motivations

Moore’s law ceased to provide the traditional single-threaded
performance increases

I clock-frequency wall of 2003
I still deliver increases in transistor density

multicore systems become the norm
need to “go parallel” to get scalability

Sébastien Binet (LAL) Go tour 2012-05-31 3 / 40

In a C++ world. . .

parallel programming in C++ is doable:
I C/C++ “locking + threads” (pthreads, WinThreads)

F excellent performance
F good generality
F relatively low productivity

I multi-threaded applications. . .
F hard to get right
F hard to keep right
F hard to keep efficient and optimized across releases

I multi-process applications. . .
F leverage fork+COW on GNU/Linux

Parallel programming in C++ is doable,
but no panacea

Sébastien Binet (LAL) Go tour 2012-05-31 4 / 40

In a C++ world. . .

in C++03, we have libraries to help with parallel programming
I boost::lambda
I boost::MPL
I boost::thread
I Threading Building Blocks (TBB)
I Concurrent Collections (CnC)
I OpenMP
I . . .

Sébastien Binet (LAL) Go tour 2012-05-31 5 / 40

In a C++11 world. . .

in C++11, we get:
I λ functions (and a new syntax to define them)
I std::thread,
I std::future,
I std::promise

Helps taming the beast
... at the price of sprinkling templates everywhere...

... and complicating further a not so simple language...

Sébastien Binet (LAL) Go tour 2012-05-31 6 / 40

In a C++11 world. . .

yay! for C++11, but old problems are still there. . .

build scalability
I templates
I headers system
I still no module system (WG21 - N2073)

F maybe in the next Technical Report ?

code distribution
I no CPAN like readily available infrastructure (and cross-platform)

for C++

Sébastien Binet (LAL) Go tour 2012-05-31 7 / 40

Time for a new language ?

“Successful new languages build on existing languages
and where possible, support legacy software. C++ grew our
of C. java grew out of C++. To the programmer, they are
all one continuous family of C languages.” (T. Mattson)

notable exception (which confirms the rule): python

Can we have a language:
as easy as python,
as fast (or nearly as fast) as C/C++/FORTRAN,
with none of the deficiencies of C++,
and is multicore/manycore friendly ?

Sébastien Binet (LAL) Go tour 2012-05-31 8 / 40

Why not Go ?
golang.org

Sébastien Binet (LAL) Go tour 2012-05-31 9 / 40

http://golang.org

Elements of go

obligatory hello world example. . .

package main
import "fmt"
func main() {

fmt.Println("Hello, World")
}

http://golang.org
Thursday, July 22, 2010

Sébastien Binet (LAL) Go tour 2012-05-31 10 / 40

Elements of go - II

founding fathers:
I Russ Cox, Robert Griesemer, Ian Lance Taylor
I Rob Pike, Ken Thompson

concurrent, compiled
garbage collected
an open-source general programming language
best of both ‘worlds’:

I feel of a dynamic language
F limited verbosity thanks to type inference system, map, slices

I safety of a static type system
I compiled down to machine language (so it is fast)

F goal is within 10% of C

object-oriented (but w/o classes), builtin reflection
first-class functions with closures
duck-typing à la python

Sébastien Binet (LAL) Go tour 2012-05-31 11 / 40

Go concurrent

goroutines

a function executing concurrently as other goroutines in the
same address space
starting a goroutine is done with the go keyword

I go myfct(arg1, arg2)

growable stack
I lightweight threads
I starts with a few kB, grows (and shrinks) as needed

F now, also available in GCC 4.6 (thanks to the GCC-Go front-end)
I no stack overflow

Sébastien Binet (LAL) Go tour 2012-05-31 12 / 40

Go concurrent - II

channels

provide (type safe) communication and synchronization

// create a channel of mytype
my_chan := make(chan mytype)
my_chan <- some_data // sending data
some_data = <- my_chan // receiving data

send and receive are atomic

"Do not communicate by sharing memory; instead,
share memory by communicating"

Sébastien Binet (LAL) Go tour 2012-05-31 13 / 40

Non-elements of Go

no dynamic libraries (frown upon)
no dynamic loading (yet)

I but can either rely on separate processes
F IPC is made easy via the netchan package
F many RPC substrates too (JSON, XML, protobuf, . . .)

I or rebuild executables on the fly
F compilation of Go code is fast
F even faster than FORTRAN and/or C

no templates/generics
I still open issue
I looking for the proper Go -friendly design

no operator overloading

Sébastien Binet (LAL) Go tour 2012-05-31 14 / 40

Go from anywhere to everywhere

code compilation and distribution are (de facto) standardized
put your code on some repository

I bitbucket, launchpad, googlecode, github, . . .
check out, compile and install in one go with go get:

I go get bitbucket.org/binet/igo
I no root access required
I automatically handle dependencies

go get -able packages are listed on the dashboard:
I godashboard.appspot.com

Sébastien Binet (LAL) Go tour 2012-05-31 15 / 40

http://godashboard.appspot.com

Bootstrap

install Go from http://golang.org/doc/install
check the environment. e.g.:

$ go version && go env
go version go1.0.1
GOROOT="/usr/lib/go"
GOBIN=""
GOARCH="amd64"
GOCHAR="6"
GOOS="linux"
GOEXE=""
GOHOSTARCH="amd64"
GOHOSTOS="linux"
GOTOOLDIR="/usr/lib/go/pkg/tool/linux_amd64"
GOGCCFLAGS="-g -O2 -fPIC -m64 -pthread"
CGO_ENABLED="1"

Sébastien Binet (LAL) Go tour 2012-05-31 16 / 40

http://golang.org/doc/install

Bootstrap - II

$ cd dev/go
$ mkdir -p repos/{src,pkg,bin} && cd repos
$ tree
.
|-- bin
|-- pkg
+-- src

$ pwd
~/dev/go/repos

$ export GOPATH=‘pwd‘
$ export PATH=${GOPATH}/bin:${PATH}

Sébastien Binet (LAL) Go tour 2012-05-31 17 / 40

Discovering the environment

getting documentation:

$ godoc fmt | less
$ godoc fmt Printf

or using the html frontend:

$ godoc -http=:8080 &
$ open http://localhost:8080

Sébastien Binet (LAL) Go tour 2012-05-31 18 / 40

Quick & dirty development: go run

$ cat ./hello.go

package main
import "fmt"
func main() {

fmt.Println("Hello, World")
}

$ go run ./hello.go
Hello, World

Sébastien Binet (LAL) Go tour 2012-05-31 19 / 40

“Serious” development

$ cd $GOPATH/src
$ mkdir -p greet
$ cat > src/greet/foo.go

package greet
import "fmt"
func Greet(name string) {

fmt.Println("Hello", name)
}

compiles and installs the ’greet’ package
$ go install greet

Sébastien Binet (LAL) Go tour 2012-05-31 20 / 40

“Serious” development - II
The greet package can now be used by a command:

via go run:
I modify the previous hello.go file to use greet.Greet

or with a proper command:

compiles and installs the ’greeter’ command
$ mkdir -p $GOPATH/src/greeter
$ cp hello.go $GOPATH/src/greeter/main.go
$ go install greeter
$ greeter
"Hello World"

modify greet/foo.go and recompile+rerun greeter:

$ go install greeter && greeter
"Hello [World]"

Sébastien Binet (LAL) Go tour 2012-05-31 21 / 40

The Go tour

$ go get code.google.com/p/go-tour/gotour
$ gotour
Serving content from ~/dev/go/repos/src/code.google.com/p/go-tour
Open your web browser and visit http://127.0.0.1:3999/

If you don’t have a mercurial client, you can grab the sources from
there: http://binet.home.cern.ch/binet/go-tour.tar.gz

$ cd $GOPATH/src
$ curl -O http://binet.home.cern.ch/binet/go-tour.tar.gz
$ tar zxvf go-tour.tar.gz

Sébastien Binet (LAL) Go tour 2012-05-31 22 / 40

http://binet.home.cern.ch/binet/go-tour.tar.gz

A simple load balancer

A unit of work:

type Work struct {
x, y, z int

}

Sébastien Binet (LAL) Go tour 2012-05-31 23 / 40

A simple load balancer - II

A worker task:

func worker(in <-chan *Work, out chan<- *Work) {
for w := range in {

w.z = w.x * w.y
Sleep(w.z)
out <- w

}
}

Must make sure other workers can run when one blocks.

Sébastien Binet (LAL) Go tour 2012-05-31 24 / 40

A simple load balancer - III

The runner:

func Run() {
in, out := make(chan *Work), make(chan *Work)
for i := 0; i < NumWorkers; i++ {

go worker(in, out)
}
go sendLotsOfWork(in)
receiveLotsOfResults(out)

}

Easy problem but also hard to solve concisely without concurrency.

Sébastien Binet (LAL) Go tour 2012-05-31 25 / 40

Concurrency enables parallelism

The load balancer is implicitly parallel and scalable.
NumWorkers could be huge.
The tools of concurrency make it almost trivial to build a safe,
working, scalable, parallel design.

Sébastien Binet (LAL) Go tour 2012-05-31 26 / 40

Concurrency simplifies synchronization

No explicit synchronization needed.
The structure of the program is implicitly synchronized.

Sébastien Binet (LAL) Go tour 2012-05-31 27 / 40

A more complex load balancer

Sébastien Binet (LAL) Go tour 2012-05-31 28 / 40

Request definition

The requester sends Requests to the balancer.

type Request struct {
fn func() int // The operation to perform.
c chan int // The channel to return the result.

}

Note the return channel inside the request. Channels are first-class
values.

Sébastien Binet (LAL) Go tour 2012-05-31 29 / 40

Requester function

An artificial but illustrative simulation of a requester, a load
generator.

func requester(work chan<- Request) {
c := make(chan int)
for {

// Kill some time (fake load).
Sleep(rand.Int63n(nWorker * 2 * Second))
work <- Request{workFn, c} // send request
result := <-c // wait for answer
furtherProcess(result)

}
}

Sébastien Binet (LAL) Go tour 2012-05-31 30 / 40

Worker definition

A channel of requests, plus some load tracking data.

type Worker struct {
requests chan Request // work to do (buffered channel)
pending int // count of pending tasks
index int // index in the heap

}

Sébastien Binet (LAL) Go tour 2012-05-31 31 / 40

Worker

Balancer sends request to most lightly loaded worker.

func (w *Worker) work(done chan *Worker) {
for {

req := <-w.requests // get Request from balancer
req.c <- req.fn() // call fn and send result
done <- w // we’ve finished this request

}
}

The channel of requests (w.requests) delivers requests to each
worker. The balancer tracks the number of pending requests as a
measure of load. Each response goes directly to its requester.
Could run the loop body as a goroutine for parallelism.

Sébastien Binet (LAL) Go tour 2012-05-31 32 / 40

Balancer definition

The load balancer needs a pool of workers and a single channel to
which requesters can report task completion.

type Pool []*Worker

type Balancer struct {
pool Pool
done chan *Worker

}

Sébastien Binet (LAL) Go tour 2012-05-31 33 / 40

Balancer function

Easy!

func (b *Balancer) balance(work chan Request) {
for {

select {
case req := <-work: // received a Request...

b.dispatch(req) // ...so send it to a Worker
case w := <-b.done: // a worker has finished ...

b.completed(w) // ...so update its info
}

}
}

Just need to implement dispatch and completed.

Sébastien Binet (LAL) Go tour 2012-05-31 34 / 40

A heap of channels

Make Pool an implementation of the Heap interface by providing a
few methods such as:

func (p Pool) Less(i, j int) bool {
return p[i].pending < p[j].pending

}

Now we balance by making the Pool a heap tracked by load.

Heap interface: http://golang.org/pkg/container/heap/

Sébastien Binet (LAL) Go tour 2012-05-31 35 / 40

http://golang.org/pkg/container/heap/

Dispatch

All the pieces are in place.

// Send Request to worker
func (b *Balancer) dispatch(req Request) {

// Grab the least loaded worker...
w := heap.Pop(&b.pool).(*Worker)
// ...send it the task.
w.requests <- req
// One more in its work queue.
w.pending++
// Put it into its place on the heap.
heap.Push(&b.pool, w)

}

Sébastien Binet (LAL) Go tour 2012-05-31 36 / 40

Completed

// Job is complete; update heap
func (b *Balancer) completed(w *Worker) {

// One fewer in the queue.
w.pending--
// Remove it from heap.
heap.Remove(&b.pool, w.index)
// Put it into its place on the heap.
heap.Push(&b.pool, w)

}

Sébastien Binet (LAL) Go tour 2012-05-31 37 / 40

Lesson

A complex problem can be broken down into easy-to-understand
components.
The pieces can be composed concurrently.
The result is easy to understand, efficient, scalable, and correct.
Maybe even parallel.

Sébastien Binet (LAL) Go tour 2012-05-31 38 / 40

Sébastien Binet (LAL) Go tour 2012-05-31 39 / 40

Bibliography

http://golang.org
http://tour.golang.org
http://concur.rspace.googlecode.com/hg/talk/concur.html

Sébastien Binet (LAL) Go tour 2012-05-31 40 / 40

http://golang.org
http://tour.golang.org
http://concur.rspace.googlecode.com/hg/talk/concur.html

	Go tour

