
Go tour - introduction

Sébastien Binet

2012-05-31

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 1 / 17



Motivations

Moore’s law ceased to provide the traditional single-threaded
performance increases

I clock-frequency wall of 2003
I still deliver increases in transistor density

multicore systems become the norm
need to “go parallel” to get scalability

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 2 / 17



In a C++ world. . .

parallel programming in C++ is doable:
I C/C++ “locking + threads” (pthreads, WinThreads)

F excellent performance
F good generality
F relatively low productivity

I multi-threaded applications. . .
F hard to get right
F hard to keep right
F hard to keep efficient and optimized across releases

I multi-process applications. . .
F leverage fork+COW on GNU/Linux

Parallel programming in C++ is doable,
but no panacea

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 3 / 17



In a C++ world. . .

in C++03, we have libraries to help with parallel programming
I boost::lambda
I boost::MPL
I boost::thread
I Threading Building Blocks (TBB)
I Concurrent Collections (CnC)
I OpenMP
I . . .

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 4 / 17



In a C++11 world. . .

in C++11, we get:
I λ functions (and a new syntax to define them)
I std::thread,
I std::future,
I std::promise

Helps taming the beast
... at the price of sprinkling templates everywhere...

... and complicating further a not so simple language...

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 5 / 17



In a C++11 world. . .

yay! for C++11, but old problems are still there. . .

build scalability
I templates
I headers system
I still no module system (WG21 - N2073)

F maybe in the next Technical Report ?

code distribution
I no CPAN like readily available infrastructure (and cross-platform)

for C++

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 6 / 17



Time for a new language ?

“Successful new languages build on existing languages
and where possible, support legacy software. C++ grew our
of C. java grew out of C++. To the programmer, they are
all one continuous family of C languages.” (T. Mattson)

notable exception (which confirms the rule): python

Can we have a language:
as easy as python,
as fast (or nearly as fast) as C/C++/FORTRAN,
with none of the deficiencies of C++,
and is multicore/manycore friendly ?

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 7 / 17



Why not Go ?
golang.org

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 8 / 17

http://golang.org


Elements of go

obligatory hello world example. . .

package main
import "fmt"
func main() {

fmt.Println("Hello, World")
}

http://golang.org
Thursday, July 22, 2010

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 9 / 17



Elements of go - II

founding fathers:
I Russ Cox, Robert Griesemer, Ian Lance Taylor
I Rob Pike, Ken Thompson

concurrent, compiled
garbage collected
an open-source general programming language
best of both ‘worlds’:

I feel of a dynamic language
F limited verbosity thanks to type inference system, map, slices

I safety of a static type system
I compiled down to machine language (so it is fast)

F goal is within 10% of C

object-oriented (but w/o classes), builtin reflection
first-class functions with closures
duck-typing à la python

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 10 / 17



Go concurrent

goroutines

a function executing concurrently as other goroutines in the
same address space
starting a goroutine is done with the go keyword

I go myfct(arg1, arg2)

growable stack
I lightweight threads
I starts with a few kB, grows (and shrinks) as needed

F now, also available in GCC 4.6 (thanks to the GCC-Go front-end)
I no stack overflow

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 11 / 17



Go concurrent - II

channels

provide (type safe) communication and synchronization

// create a channel of mytype
my_chan := make(chan mytype)
my_chan <- some_data // sending data
some_data = <- my_chan // receiving data

send and receive are atomic

"Do not communicate by sharing memory; instead,
share memory by communicating"

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 12 / 17



Non-elements of Go

no dynamic libraries (frown upon)
no dynamic loading (yet)

I but can either rely on separate processes
F IPC is made easy via the netchan package
F many RPC substrates too (JSON, XML, protobuf, . . . )

I or rebuild executables on the fly
F compilation of Go code is fast
F even faster than FORTRAN and/or C

no templates/generics
I still open issue
I looking for the proper Go -friendly design

no operator overloading

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 13 / 17



Go from anywhere to everywhere

code compilation and distribution are (de facto) standardized
put your code on some repository

I bitbucket, launchpad, googlecode, github, . . .
check out, compile and install in one go with go get:

I go get bitbucket.org/binet/igo
I no root access required
I automatically handle dependencies

go get -able packages are listed on the dashboard:
I godashboard.appspot.com

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 14 / 17

http://godashboard.appspot.com


Tour content

bases of go: types, slices, maps, functions, closures, interfaces
goroutines, channels
mini load-balancer

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 15 / 17



Sébastien Binet (LAL) Go tour - introduction 2012-05-31 16 / 17



Bibliography

http://golang.org
http://tour.golang.org
http://concur.rspace.googlecode.com/hg/talk/concur.html

Sébastien Binet (LAL) Go tour - introduction 2012-05-31 17 / 17

http://golang.org
http://tour.golang.org
http://concur.rspace.googlecode.com/hg/talk/concur.html

	Go tour - intro

