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Detection and estimation of muons in the Auger
project

Figure: A conceptual shower (http://auger.org).
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Tankwise muonic signal model
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Trans-dimensional problems

Unknown parameters:
@ Number of components (muons) N, € N
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Trans-dimensional problems

Unknown parameters:
@ Number of components (muons) N, € N
@ Component-specific parameters Oy, = (a,,t,)' € N«
O Amplitudes

a,=(au1,---, aquu)t

O Arrival times

t, = (tu1,-.. vt#aNu)t
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Trans-dimensional problems

Unknown parameters:
@ Number of components (muons) N, € N
@ Component-specific parameters Oy, = (a,,t,)' € N«
O Amplitudes

a,=(au1,---, aquu)t

O Arrival times

ty = (tu,lv---vtu,Nu)t

@ Space X = Uy, cn{Nu} x ON with points x = (N, O,)
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RJ-MCMC sampler Within-model moves

Between models moves

Bayesian inference

@ Likelihood /\

p(y [ x) p(x)
Jxp(y | x")p(x)ax’
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Bayesian inference

@ Likelihood /\
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Between models moves

Bayesian inference

@ Likelihood /\

p(y [ x) p(x)
Jxp(y [ xX)yp(x")ax’

@ Prior distribution
@ Posterior distribution

@ X = (Nm@N,,,)
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RJ-MCMC sampler Within-model moves

Between models moves

Bayesian inference

@ Likelihood /\

p(y [ x) p(x)
Jxp(y [ xX)yp(x")ax’

@ Prior distribution
@ Posterior distribution

9 X = (NN70N;L)
[0 both detection and estimation problems
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RJ-MCMC sampler Within-model moves

Between models moves

Bayesian inference

@ Likelihood /\

p(y [ x) p(x)
Jxp(y [ xX)yp(x")ax’

@ Prior distribution
@ Posterior distribution

9 X = (NN70N;L)
0 both detection and estimation proplems

@ high-dimensional / intractable integrals ) J
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RJ-MCMC sampler Within-model moves

Between models moves

Markov Chain Monte Carlo (MCMC) methods

@ generate samples from the posterior distribution of interest
(target distribution) p(x | y).

@ construct a Markov chain (x, ..., x M) that under some
conditions converges to p(x | y).
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RJ-MCMC sampler Within-model moves

Between models moves

Markov Chain Monte Carlo (MCMC) methods

@ generate samples from the posterior distribution of interest
(target distribution) p(x | y).

@ construct a Markov chain (x (), ... x(M)) that under some
conditions converges to p(x | y).

@ Famous algorithms:

O Metropolis-Hastings (MH) sampler [Metropoalis, et al.
1953, Hastings, 1970.]

O Gibbs sampler [Geman and Geman, 1984.]

0 RJ-MCMC sampler [Green, 1995.]
[Robert and Casella, 2004.]
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Markov Chain Monte Carlo (MCMC) methods

@ generate samples from the posterior distribution of interest
(target distribution) p(x | y).

@ construct a Markov chain (x, ..., x M) that under some
conditions converges to p(x | y).

@ Famous algorithms:

O Metropolis-Hastings (MH) sampler [Metropoalis, et al.
1953, Hastings, 1970.]

O Gibbs sampler [Geman and Geman, 1984.]

0 RJ-MCMC sampler [Green, 1995.]
[Robert and Casella, 2004.]

Alireza Roodaki RJ-MCMC with different options ...



RJ-MCMC sampler Within-model moves

Between models moves

RJ-MCMC sampler

Generalization of the famous Metropolis-Hastings (MH)
sampler;
Given x (M),

i) Propose x’ ~ Q(x(M .).
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RJ-MCMC sampler Within-model moves

Between models moves

RJ-MCMC sampler

Generalization of the famous Metropolis-Hastings (MH)
sampler;
Given x (M),
i) Propose x’ ~ Q(x(M .).
i) Accept, i.e., setx("*1) = x’, with probability o (x (M, x");
Otherwise, reject the move x ("+1) = x (),
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RJ-MCMC sampler Within-model moves

Between models moves

RJ-MCMC sampler (Contd.)

i) Within model (fixed-dimensional) moves

0 Update the component-specific parameters, i.e., a,
andt,, assuming N,, is fixed
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RJ-MCMC sampler Within-model moves

Between models moves

RJ-MCMC sampler (Contd.)

i) Within model (fixed-dimensional) moves
0 Update the component-specific parameters, i.e., a,
and t,, assuming N, is fixed
i) Between models (trans-dimensional) moves
O Propose jumps in the number N, of muons

O Birth or Death moves: add or remove one muon
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RJ-MCMC sampler Within-model moves

Between models moves

RJ-MCMC sampler: within-model moves

Given the number N, of muons is fixed
@ propose new vectors of arrival times and amplitudes
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RJ-MCMC sampler: within-model moves

Given the number N, of muons is fixed
@ propose new vectors of arrival times and amplitudes

0 Update each parameter using the proposal
distribution Q( - | x)
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RJ-MCMC sampler: within-model moves

Given the number N, of muons is fixed
@ propose new vectors of arrival times and amplitudes

0 Update each parameter using the proposal
distribution Q( - | x)

O Normal random walk sampler, mixture of proposals,
adaptive proposals (e.g., AMOR), ...
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RJ-MCMC sampler Within-model moves

Between models moves

RJ-MCMC sampler: within-model moves

Given the number N, of muons is fixed
@ propose new vectors of arrival times and amplitudes
0 Update each parameter using the proposal
distribution Q( - | x)
O Normal random walk sampler, mixture of proposals,
adaptive proposals (e.g., AMOR), ...
@ Acceptance probability

, . X
ol x) = m'”{ ol 1y) QW [x)
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RJ-MCMC sampler

Within-model moves
Between models moves

Normal Random Walk sampler:
© Q(- [ x)=N(- |x,0?)
o a(x.x’) = min {1,200}

 p(xly)
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RJ-MCMC sampler

Within-model moves
Between models moves

Normal Random Walk sampler:
© Q(- [ x)=N(- |x,07)
@ a(x,x’) =min {1, %((ilb/))}
@ the performance depends on the scale parameter 2
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RJ-MCMC sampler Within-model moves

Between models moves

First example

Number of photoelectrons (n)

!l
O L L L
0 200 400 600 800 1000 1200 1400

t [ns]

Figure: Observed signal n when N,, = 4, t,, = (50, 100, 250, 500)"
and a,, = (50,50, 50,50)".
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RJ-MCMC sampler Within-model moves

Between models moves

Trace of sorted arrival times ( o =5)
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RJ-MCMC sampler

Within-model moves
Between models moves

Trace of (sorted) amplitudes (
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RJ-MCMC sampler Within-model moves

Between models moves

Histogram of sorted arrival times (
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RJ-MCMC sampler

Within-model moves
Between models moves

Histogram of (sorted) amplitudes ( o =05)
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RJ-MCMC sampler Within-model moves

Between models moves

Average MH acceptance rates ( o=25)
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Trace of sorted arrival times (

RJ-MCMC sampler

Alireza Roodaki

Within-model moves
Between models moves

o = 100)
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RJ-MCMC sampler

Within-model moves
Between models moves

Trace of (sorted) amplitudes ( o = 100)
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RJ-MCMC sampler Within-model moves

Between models moves

Histogram of sorted arrival times ( o = 100)
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RJ-MCMC sampler

Within-model moves
Between models moves

Histogram of (sorted) amplitudes ( o = 100)
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RJ-MCMC sampler Within-model moves

Between models moves

Average MH acceptance rates ( o = 100)
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RJ-MCMC sampler Within-model moves

Between models moves

Trace of sorted arrival times ( o = 100)
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RJ-MCMC sampler Within-model moves

Between models moves

Some “simple” solutions

@ Mixture of “local” and “global” moves
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RJ-MCMC sampler Within-model moves

Between models moves

Some “simple” solutions

@ Mixture of “local” and “global” moves
0 Q(x, +) = AN(+ [ x,0%) + (1 = NN (-

X,O’%)
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RJ-MCMC sampler Within-model moves

Between models moves

Some “simple” solutions

@ Mixture of “local” and “global” moves
0 Q(x,+) = N(- [x,07) + (1= MN(- [x,03)

0 a(x,x’) = min {1, F;,((Xx"‘yy))}
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RJ-MCMC sampler Within-model moves

Between models moves

Some “simple” solutions

@ Mixture of “local” and “global” moves
0 Q(x,+) = N(- [x,07) + (1= MN(- [x,03)

0 a(x,x’) = min {1, ";((Xx"‘yy))}

@ Localmove = 0, =5
@ Global move = o, = 100
@ \=0.8
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RJ-MCMC sampler

Within-model moves
Between models moves

Trace of sorted arrival times ( )
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RJ-MCMC sampler

Within-model moves
Between models moves

Trace of (sorted) amplitudes ( )
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RJ-MCMC sampler Within-model moves

Between models moves

Histogram of sorted arrival times (
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RJ-MCMC sampler

Within-model moves
Between models moves

Histogram of (sorted) amplitudes (
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RJ-MCMC sampler Within-model moves

Between models moves

Average MH acceptance rates (
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RJ-MCMC sampler Within-model moves

Between models moves

Some “simple” solutions (Contd.)

@ Mixture of “local” and “global” moves
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RJ-MCMC sampler Within-model moves

Between models moves

Some “simple” solutions (Contd.)

@ Mixture of “local” and “global” moves
@ Observed data driven proposal distributions
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RJ-MCMC sampler Within-model moves

Between models moves

Observed data driven proposal distribution
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Figure: Normalized observed data (n). Blue is the current state and
red is the proposed state.
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RJ-MCMC sampler

Within-model moves
Between models moves

Trace of sorted arrival times (
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RJ-MCMC sampler

Within-model moves
Between models moves

Trace of (sorted) amplitudes (

o 100 100
©
=
£ 50 50
g
0 0
0O 05 1 15 2 0O 05 1 15 2
» 100 404100
©
=
= 50
5
0 0
0O 05 1 15 2 0O 05 1 15 2
Iteration  x10% Iteration  x10%

Alireza Roodaki RJ-MCMC with different options ... 33/ 86



RJ-MCMC sampler

Within-model moves
Between models moves

Histogram of sorted arrival times (
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RJ-MCMC sampler

Within-model moves
Between models moves

Histogram of (sorted) amplitudes (
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RJ-MCMC sampler Within-model moves

Between models moves

Average MH acceptance rates (
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RJ-MCMC sampler Within-model moves

Between models moves

Between models moves

@ propose changes in the number N, of muons
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RJ-MCMC sampler Within-model moves

Between models moves

Between models moves

@ propose changes in the number N, of muons
@ Birth move: adds a muon (My,, — My, 11)

Alireza Roodaki RJ-MCMC with different opti



RJ-MCMC sampler Within-model moves

Between models moves

Between models moves

@ propose changes in the number N, of muons
@ Birth move: adds a muon (My, — My, 11)

0 Propose 6* from Q(6*) = Q(a%) - Q(t)
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RJ-MCMC sampler Within-model moves

Between models moves

Between models moves

@ propose changes in the number N, of muons
@ Birth move: adds a muon (My, — My, 11)
0 Propose 6* from Q(6*) = Q(a};) - Q(t)))

O Insertit at the position i, where i € {1,...,N, + 1}
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RJ-MCMC sampler Within-model moves

Between models moves

Between models moves

@ propose changes in the number N, of muons
@ Birth move: adds a muon (My, — My, 11)

0 Propose 6* from Q(6*) = Q(a};) - Q(t)))

O Insert it at the position i, wherei € {1,...,N, + 1}
@ Death move: removes a muon (My, — My, 1)
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RJ-MCMC sampler Within-model moves

Between models moves

Between models moves (Contd.)

@ The performance of the RJ-MCMC sampler depends on

Q(67) = Q(a},) - Q(t2)
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RJ-MCMC sampler Within-model moves

Between models moves

Between models moves (Contd.)

@ The performance of the RJ-MCMC sampler depends on
Q(6*) = Q(ay,) - Q(t})
O Using their prior distributions, i.e.,
Q(ay) = U(0,134.4) and Q(t;) = 7G(2.5, 350)
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RJ-MCMC sampler Within-model moves

Between models moves

Between models moves (Contd.)

@ The performance of the RJ-MCMC sampler depends on
Q(6*) = Q(ay,) - Q(t})
O Using their prior distributions, i.e.,
Q(ay) = U(0,134.4) and Q(t;) = 7G(2.5, 350)

O Using residual of the reconstructed signal
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RJ-MCMC sampler Within-model moves

Between models moves

Between models moves (Contd.)

@ The performance of the RJ-MCMC sampler depends on
Q(6*) = Q(ay,) - Q(t})
O Using their prior distributions, i.e.,
Q(ay) = U(0,134.4) and Q(t;) = 7G(2.5, 350)

O Using residual of the reconstructed signal

O Adaptive RJ-MCMC sampler
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RJ-MCMC sampler Within-model moves

Between models moves

Example 1: Observed data (n)

Number of photoelectrons (n)
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RJ-MCMC sampler Within-model moves

Between models moves

Example 1: AR RJ-MCMC sampler
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Figure: Posterior and chain of N,,.
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RJ-MCMC sampler Within-model moves

Between models moves

Example 1: AR RJ-MCMC sampler (Contd.)
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Figure: Statistics of the chain of N,,; mean and 25 confidence
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RJ-MCMC sampler Within-model moves

Between models moves

Example 1: AR RJ-MCMC sampler (Contd.)
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RJ-MCMC sampler Within-model moves

Between models moves

Example 1: AR RJ-MCMC sampler
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RJ-MCMC sampler

Within-model moves
Between models moves

Example 1: BK & RB RJ-MCMC sampler

LA L

NV
4 1

7“‘
6
3
zZ
5
4
0

0:3
P(NuIn)

0 100 200 300 400 500 600 7O

t [ns]

RJ-MCMC with different options ...

Alireza Roodaki



RJ-MCMC sampler Within-model moves

Between models moves

Between models moves (Contd.)

@ The performance of the RJ-MCMC sampler depends on
Q(6*) = Q(ay,) - Q(t})
O Using their prior distributions, i.e.,
Q(a;) =U(0,134.4) and Q(t;) = 7G(2.5,350)

O Using residual of the reconstructed signal

0 Adaptive RJ-MCMC sampler

Alireza Roodaki RJ-MCMC with different options ... 45/ 86



RJ-MCMC sampler Within-model moves

Between models moves

Example 1: Observed data (n)

Number of photoelectrons (n)
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RJ-MCMC sampler Within-model moves

Between models moves

Current reconstructed signal (")
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RJ-MCMC sampler Within-model moves

Between models moves

Residual (n — A)
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RJ-MCMC sampler Within-model moves

Between models moves
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RJ-MCMC sampler Within-model moves

Between models moves

PDF to sample from!
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@ Which method performs better than the others?
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@ Which method performs better than the others?
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Metrics: Fixed-dimensional case

@ Many distance measures:
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Metrics: Fixed-dimensional case

@ Many distance measures:
O mean squared error

A

MSE = /(6 — 8)'(6 — 6)
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Metrics: Fixed-dimensional case

@ Many distance measures:
O mean squared error

A

MSE = /(6 — 8)'(6 — 6)

Setting 6 = (t,,a,), then

oc=5 | 0 =100 | Mixture | Observe | AMOR
MSE | 28955 | 22.01 14.11 10.81 ?

But what can we conclude?
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Challenges:
@ Simulation based methods
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Metrics

Fixed-dimensional case
Trans-dimensional case

Example 1: BK & RB RJ-MCMC sampler
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Fixed-dimensional case
Trans-dimensional case

Metrics

Summarized posterior

normalized density

. |
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Figure: Normalized densities of the fitted Gaussian components.
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Fixed-dimensional case

Metrics . .
Trans-dimensional case

Metrics: Trans-dimensional case

Challenges:
@ Simulation based methods

O How to report point estimates (summarize
posterior)?

O label-switching issue
@ How to compare vectors of different dimensions?
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Metrics . .
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Metrics: Trans-dimensional case (Contd.)

Some ideas

@ Work with quantities that depend neither on the labels nor
on the dimensions
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Metrics: Trans-dimensional case (Contd.)

Some ideas
@ Work with quantities that depend neither on the labels nor
on the dimensions

O reconstructed signal (not very good due to
randomness)

O estimating hyperparameters, e.g., hyperparameters
of prior over arrival times

O optimization team?
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Metrics: Trans-dimensional case (Contd.)

Some ideas
@ binned parameter space

O counting False Alarms and Omissions to construct
a Loss function
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Fixed-dimensional case

Metrics . .
Trans-dimensional case

Metrics: Trans-dimensional case (Contd.)

Some ideas
@ binned parameter space

O counting False Alarms and Omissions to construct
a Loss function

@ Other distance measures
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Conclusion & Future work

@ The mixture and observed data driven proposals had
“good” performance
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Conclusion

Conclusion & Future work

@ The mixture and observed data driven proposals had
“good” performance

@ The between model moves’ acceptance rates were low
although the RJ-MCMC sampler mixed well?!
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Conclusion

Conclusion & Future work

@ improving the between model moves proposals
0 Observed data driven proposals

0 Adaptive RJ-MCMC sampler?
@ Sampler for the complete model
0 Electromagnetic components

O Real observed signal
@ implementing metrics to compare methods
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Conclusion

Questions?

Thank you for your attention!
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Example 2: Observed data (n)

Number of photoelectrons (n)
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Example 3: Observed data (n)
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Example 6: Observed data (n)
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Figure: Posteriors of N,, and sorted arrival times, t,, given N,.
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Example 7: Observed data (n)
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Example 10: Observed data (n)
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Example 10: AR RJ-MCMC sampler
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