# Computational statistics: a silent revolution 

## Balázs Kégl

AppStat: Machine Learning and Applied Statistics group
Linear Accelerator Laboratory / CNRS \& University Paris Sud

Clouds pour le Calcul Scientifique
November 27, 2012

## Outline

- Less about BigData, more about BigComputation
- what professional inferrers and learners can do with large computational resources
- How to do inference once you have a model
- likelihood-based inference by sampling
- likelihood-free inference by simulation
- How to build models from scratch
- deep learning: can the google cat be converted into a google boson?

What is this?


What is this?



What is this?


What is this?


## What is this?

Granularity and hadronic cascades (Start of) Hadronic showers in the SiW Ecal

Complex and impressive


Inelastic reaction in SiW Ecal

Simple but nice


Short truncated showers

What is this?


## Models

- Inference
- if you want to be able to answer questions about observed phenomena, you need a model
- if you want quantitative answers, you need a formal model
- Formal setup
- x: observation vector, $\Theta$ : parameter vector to infer
- likelihood: $\mathrm{p}(\mathrm{x} \mid \Theta)$
- simulator: given $\Theta$, generate a random $x$


## A formal model





$p(x \mid t)$

$p(x \mid t 1, \ldots t 4) ; p(t \mid \Theta)$

## Inference by sampling

| METROPOLIS $\left(p(x \mid \theta), p(\theta), \theta^{(0)}, \Sigma, T\right)$ |  |  |
| :---: | :---: | :--- |
| 1 | $\mathcal{S} \leftarrow \emptyset$ |  |
| 2 | for $t \leftarrow 1$ to $T$ |  |
| 3 | $\theta \sim \mathcal{N}\left(\theta^{(t-1)}, \Sigma\right)$ | $\triangleright$ proposal |
| 4 | if $\frac{p(x \mid \theta) p(\theta)}{p\left(x \mid \theta^{(t-1)}\right) p\left(\theta^{(t-1)}\right)}>\mathcal{U}[0,1]$ then |  |
| 5 | $\theta^{(t)} \leftarrow \theta$ | $\triangleright$ accept |
| 5 | else |  |
| 7 | $\theta^{(t)} \leftarrow \theta^{(t-1)}$ | $\triangleright$ reject |
| 8 | $\mathcal{S} \leftarrow \mathcal{S} \cup\left\{\theta^{(t)}\right\}$ | $\triangleright$ update posterior sample |
| 9 | return $\mathcal{S}$ |  |




## Inference by sampling



Inference by sampling


## Inference by sampling

- An elegant approach for solving the inverse problem $p(x \mid \Theta) \rightarrow p(\Theta \mid x)$
- needs the likelihood $p(x \mid \Theta)$ - a modeling requirement
- needs to evaluate the likelihood a zillion times - a computational requirement
- When the likelihood cannot be computed but we can simulate from $p(x \mid \Theta)$
- ABC: approximate Bayesian computation
- only needs a similarity metrics between observables $K(x 1, x 2)$
- needs to simulate from $p(x \mid \Theta)$ a zillion times - a computational requirement


## Outline

- Less about BigData, more about BigComputation
- what professional inferrers and learners can do with large computational resources
- of course related (BigData comes from BigComputers), but the viewpoint is different
- How to do inference once you have a model
- simulation-based inference
- How to build models from scratch
- deep learning: can the google cat be converted into a google boson?

How to build models for these?



## The deep learning revolution

- Training multi-layer neural networks
- biological inspiration: we know the brain is multi-layer
- appealing from a modeling point of view: abstraction increases with depth
- notoriously difficult to train until Hinton (stacked RBMs) and Bengio (stacked autoencoders), around 2006
- the key principle is unsupervised pre-training
- they remain computationally very expensive, but they learn high-level (abstract) features and they scale: with more data they learn more

The deep learning revolution
－ThemNistden 000000000000000 ／111／11／111／111
22222222ま222220
333333333333333
444444444444444
555555355555555
666666666666666
フフ7フワフフフフワフフフ）
888888888888888
999999999999999

## The deep learning revolution

- Google passes the "purring test"
- I6K cores watching IOM youtube stills for 3 days
- completely unsupervised



## The deep learning revolution

- Can we also learn physics by observing natural (or man-designed) phenomena?

Granularity and hadronic cascades (Start of) Hadronic showers in the SiW Ecal

Complex and impressive


Inelastic reaction in SiW Ecal

Simple but nice


Short truncated showers

