Computational statistics: a silent revolution

Balázs Kégl

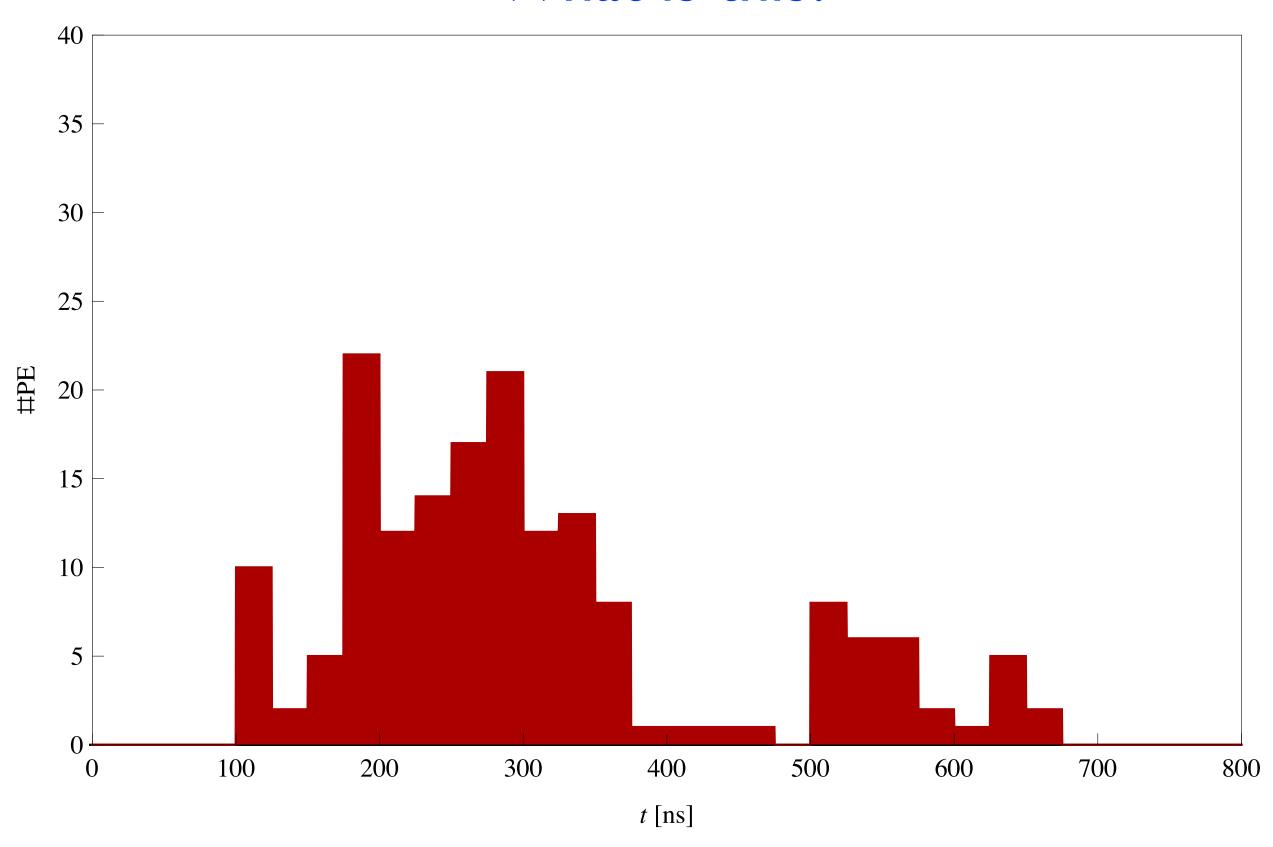
AppStat: Machine Learning and Applied Statistics group

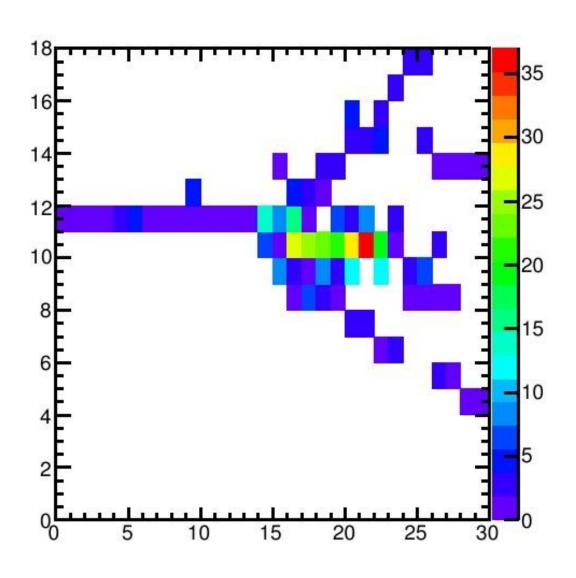
Linear Accelerator Laboratory / CNRS & University Paris Sud

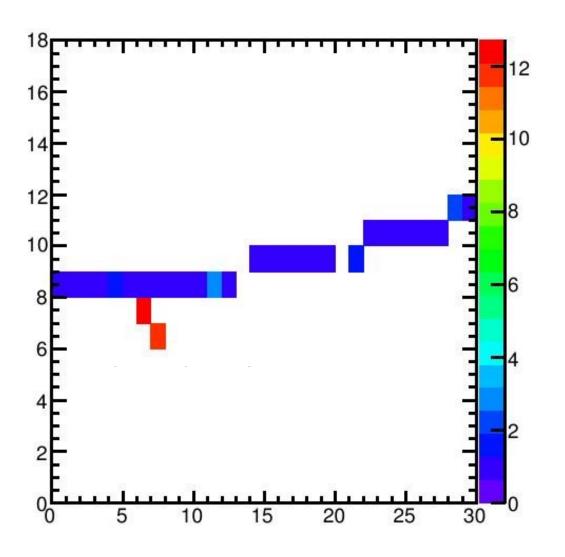
Clouds pour le Calcul Scientifique November 27, 2012

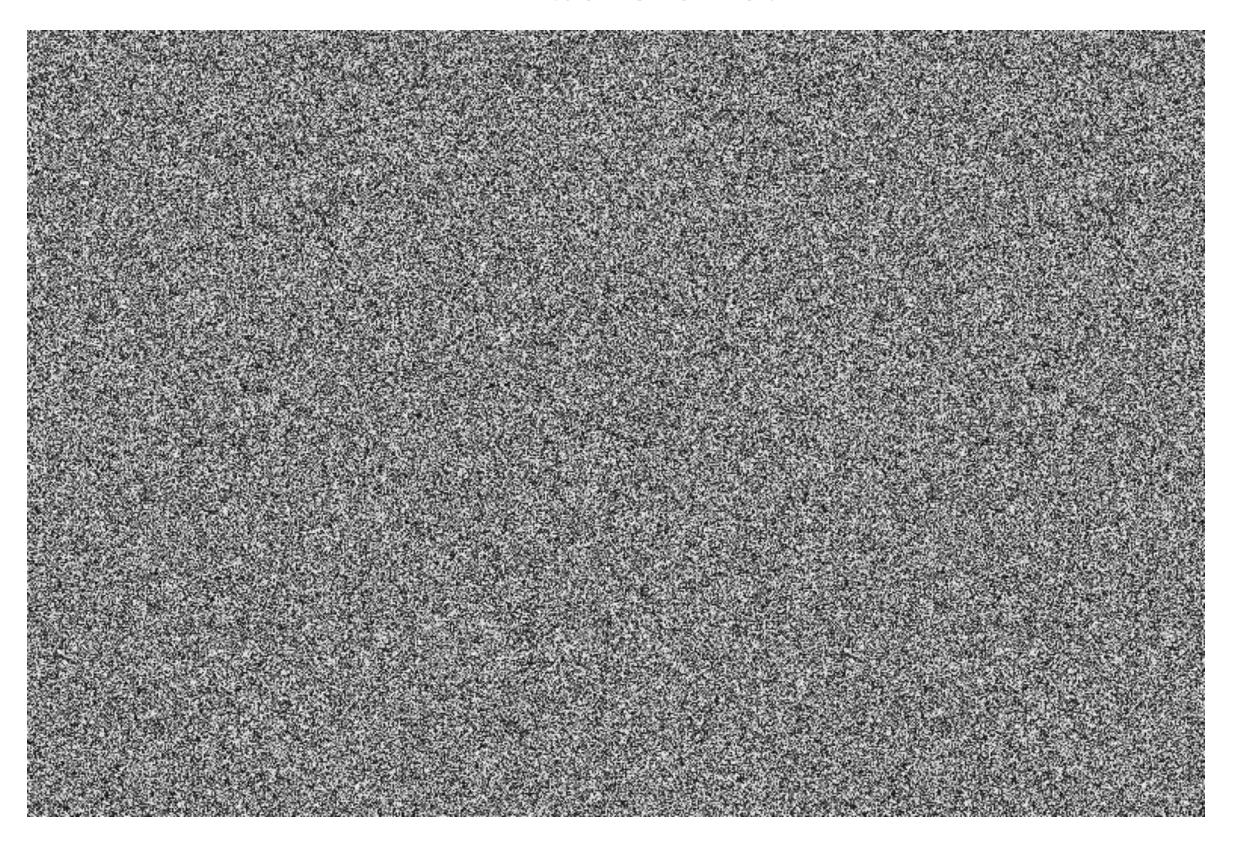
Outline

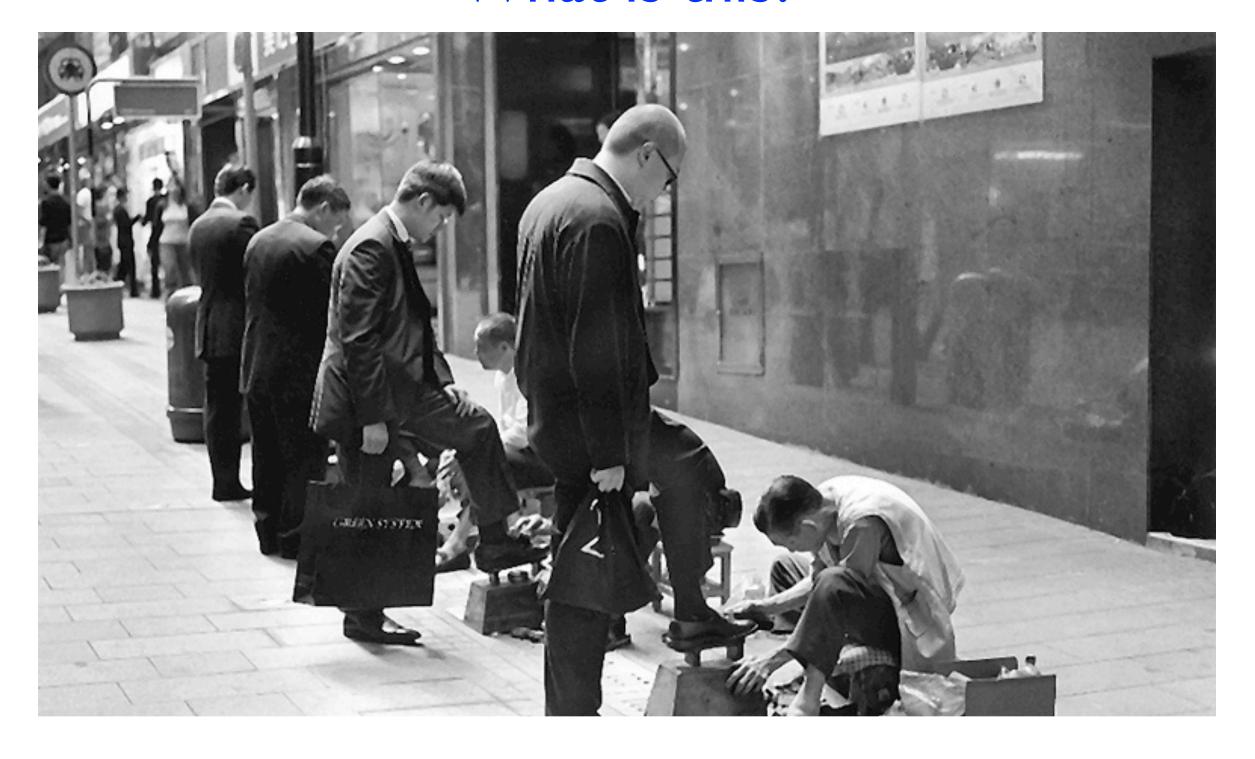
- Less about BigData, more about BigComputation
 - what professional inferrers and learners can do with large computational resources
- How to do inference once you have a model
 - likelihood-based inference by sampling
 - likelihood-free inference by simulation
- How to build models from scratch
 - deep learning: can the google cat be converted into a google boson?





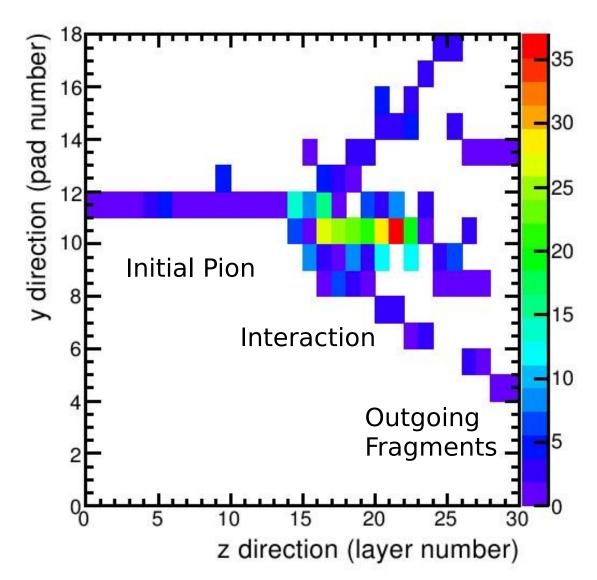






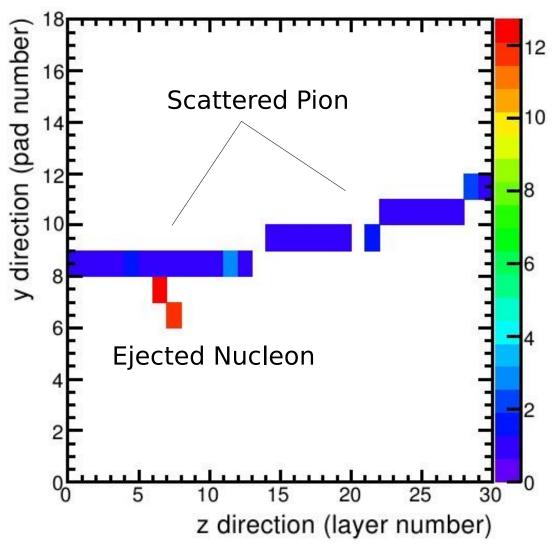
Granularity and hadronic cascades (Start of) Hadronic showers in the SiW Ecal

Complex and impressive

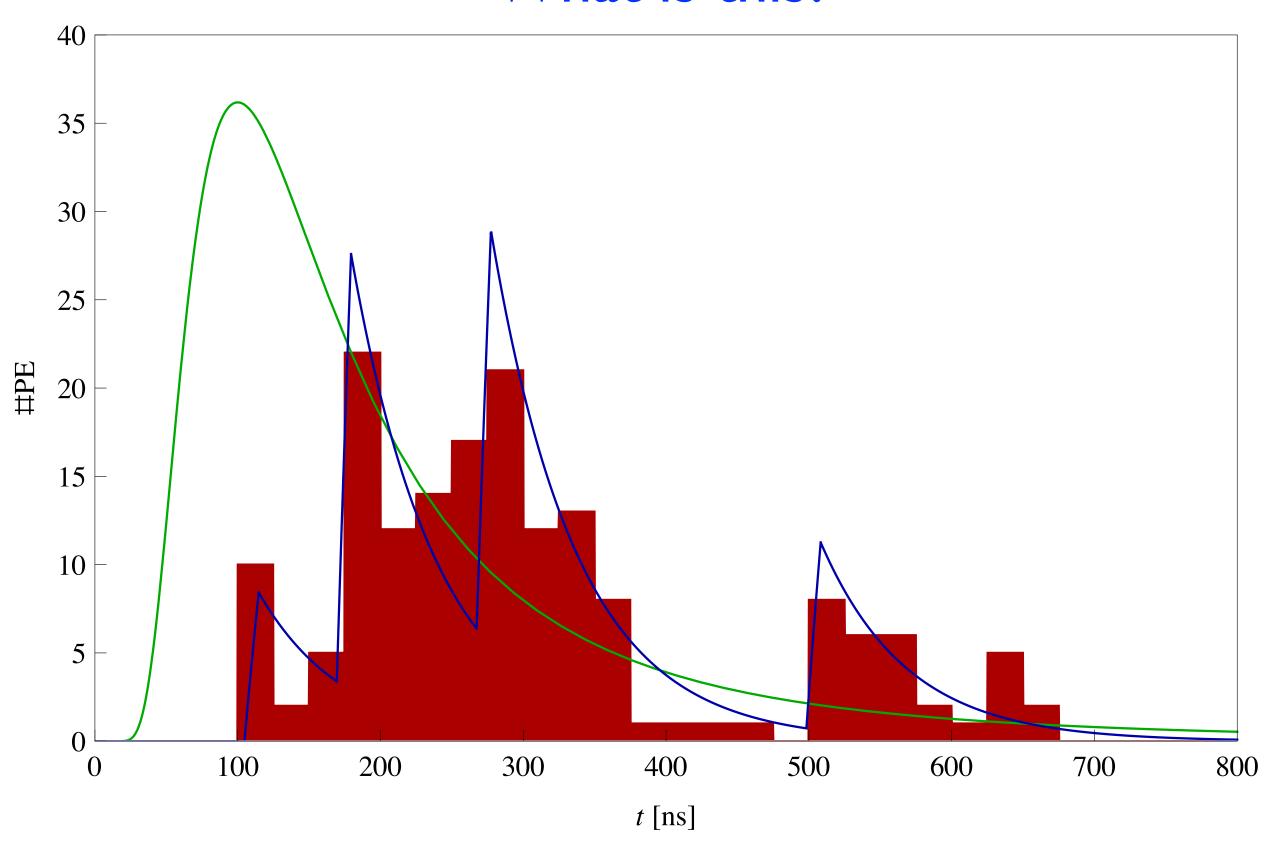


Inelastic reaction in SiW Ecal

Simple but nice



Short truncated showers



Models

Inference

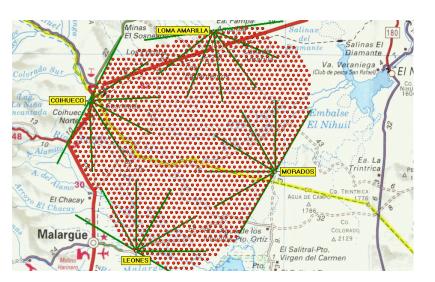
- if you want to be able to answer questions about observed phenomena, you need a model
- if you want quantitative answers, you need a formal model

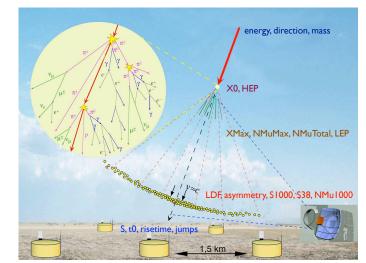
Formal setup

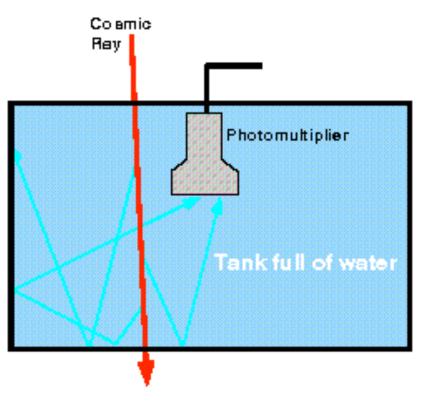
- x: observation vector, Θ : parameter vector to infer
- likelihood: p(x | Θ)
- simulator: given Θ , generate a random x

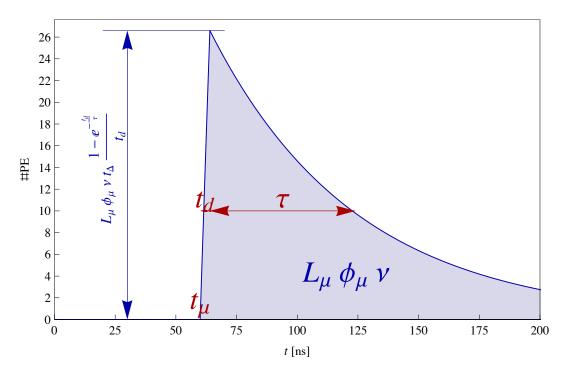
A formal model

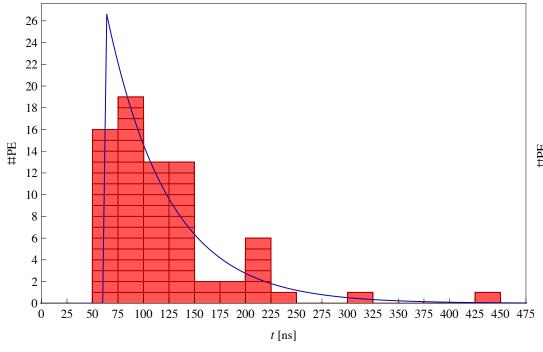


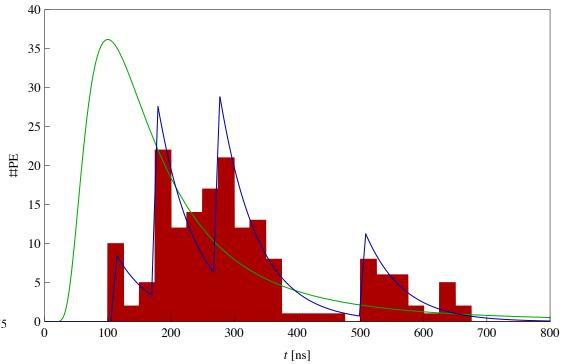






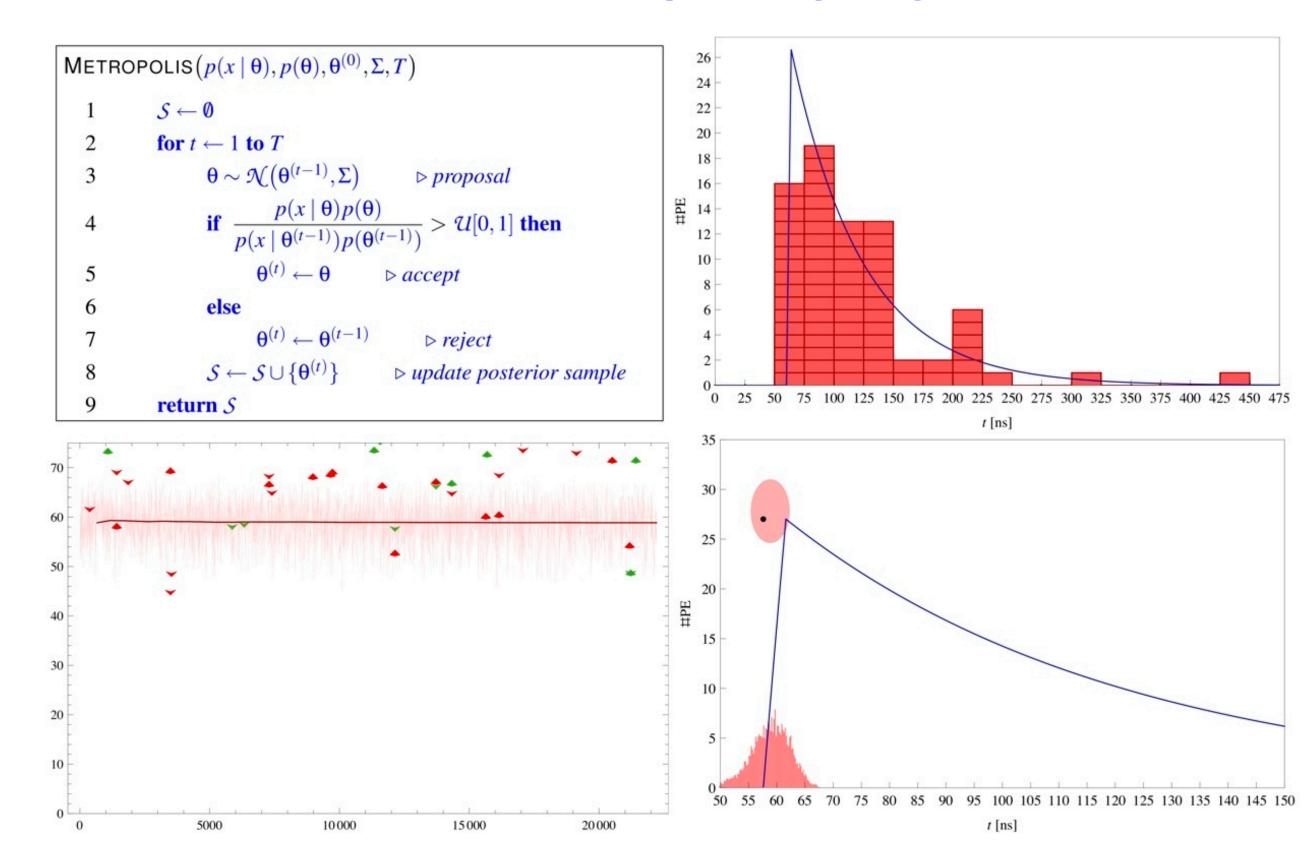




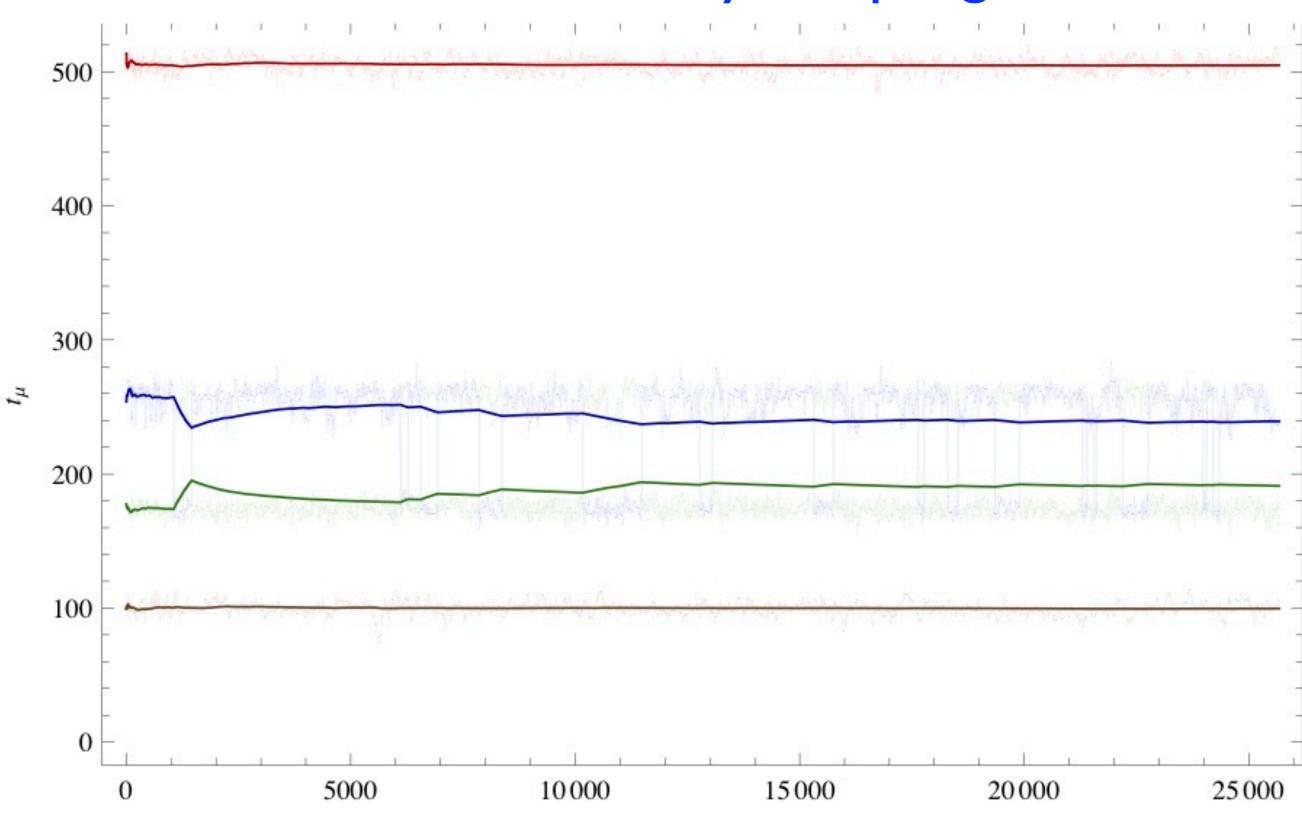


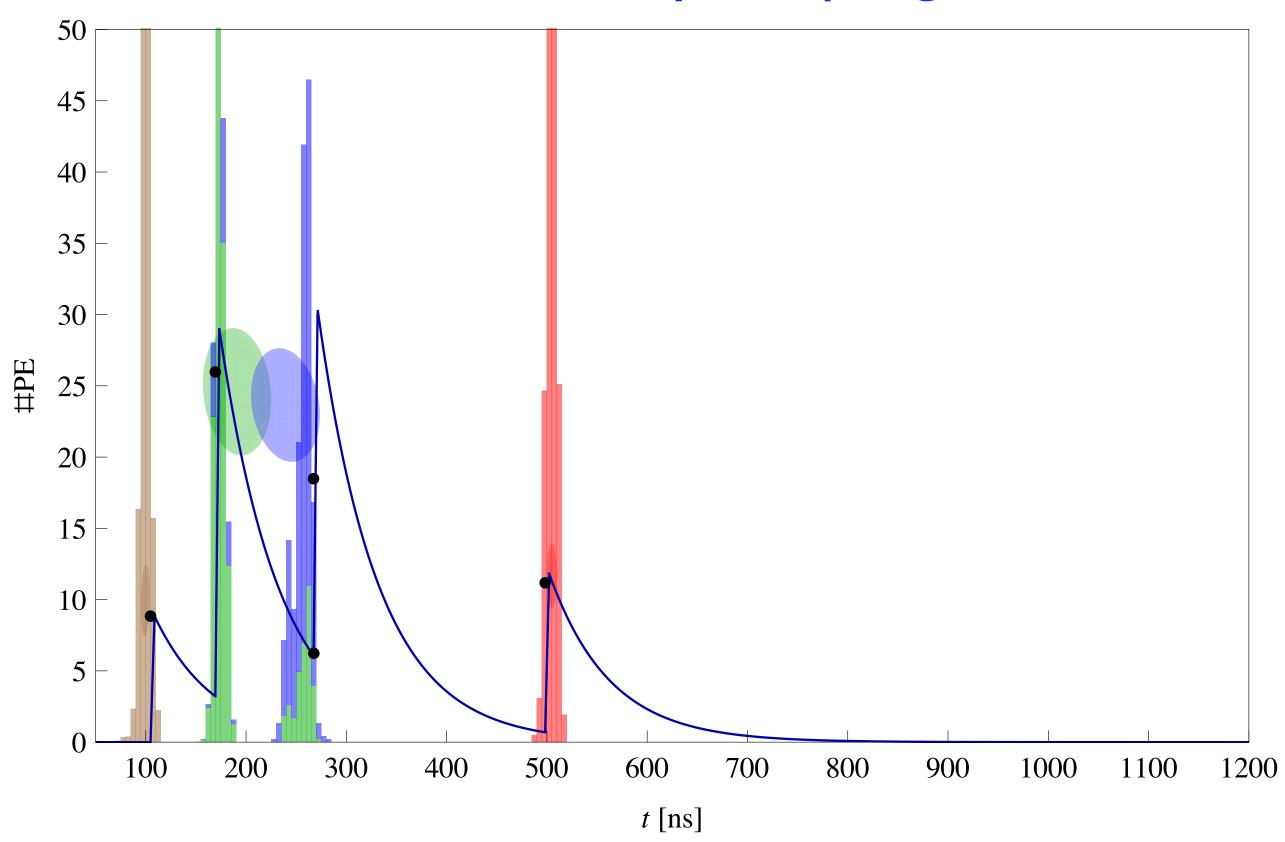
 $p(x \mid t)$

 $p(x | t1,...t4); p(t | \Theta)$



| |



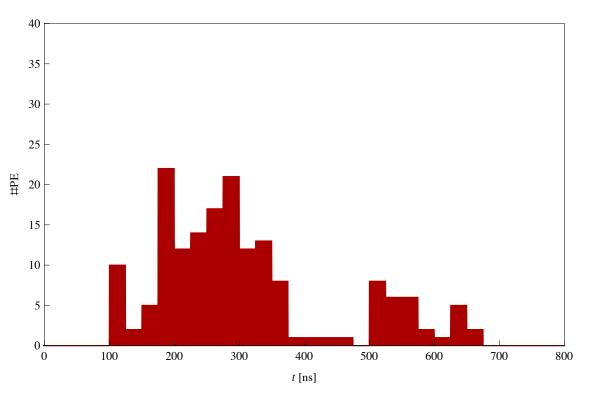


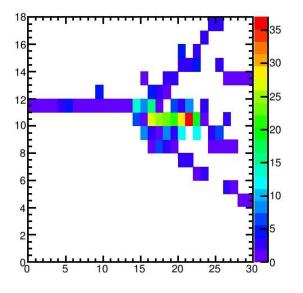
- An elegant approach for solving the inverse problem $p(x \mid \Theta) \rightarrow p(\Theta \mid X)$
 - needs the likelihood $p(x \mid \Theta)$ a modeling requirement
 - needs to evaluate the likelihood a zillion times a computational requirement
- When the likelihood cannot be computed but we can simulate from $p(x \mid \Theta)$
 - ABC: approximate Bayesian computation
 - only needs a similarity metrics between observables $K(x_1,x_2)$
 - needs to simulate from $p(x \mid \Theta)$ a zillion times a computational requirement

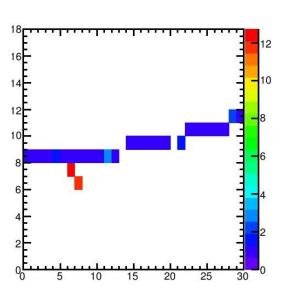
Outline

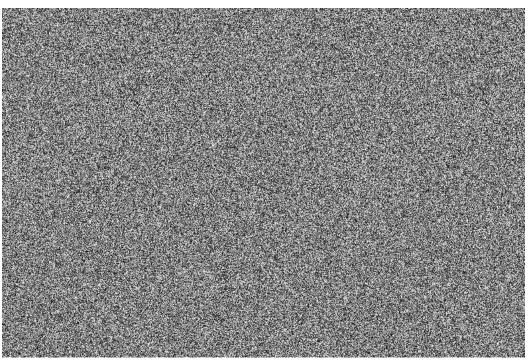
- Less about BigData, more about BigComputation
 - what professional inferrers and learners can do with large computational resources
 - of course related (BigData comes from BigComputers), but the viewpoint is different
- How to do inference once you have a model
 - simulation-based inference
- How to build models from scratch
 - deep learning: can the google cat be converted into a google boson?

How to build models for these?







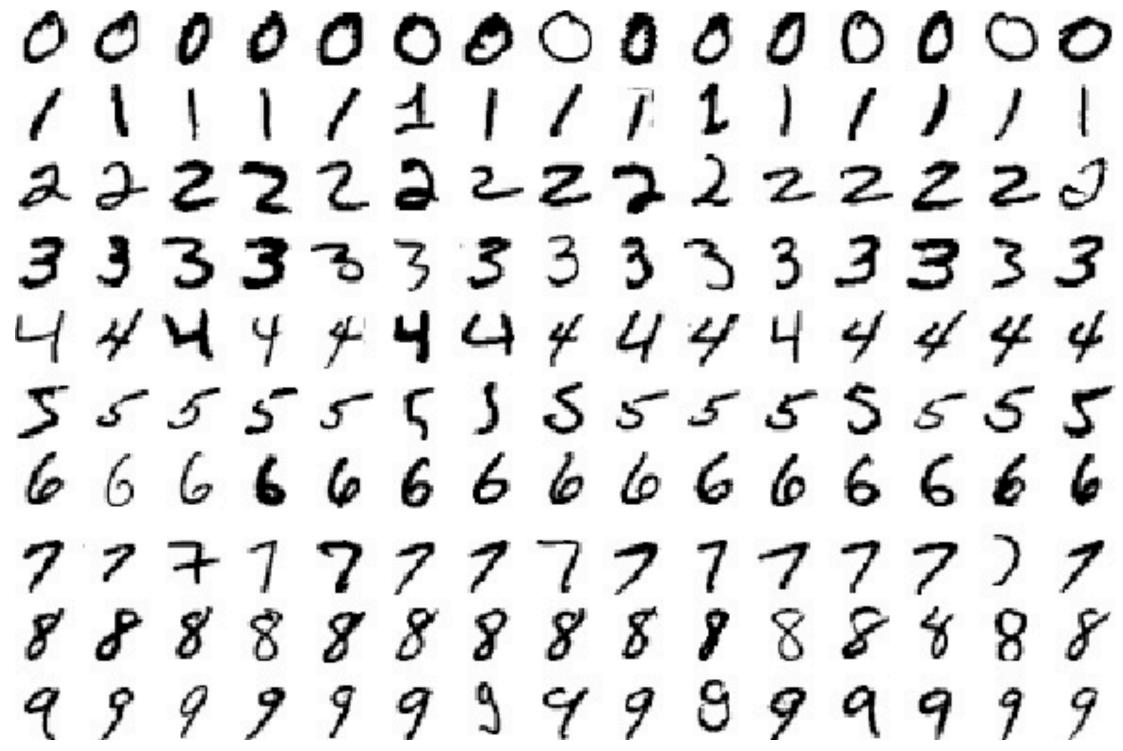


The deep learning revolution

- Training multi-layer neural networks
 - biological inspiration: we know the brain is multi-layer
 - appealing from a modeling point of view: abstraction increases with depth
 - notoriously difficult to train until Hinton (stacked RBMs) and Bengio (stacked autoencoders), around 2006
 - the key principle is unsupervised pre-training
 - they remain computationally very expensive, but they learn high-level (abstract) features and they scale: with more data they learn more

The deep learning revolution

The MNIST DBN



The deep learning revolution

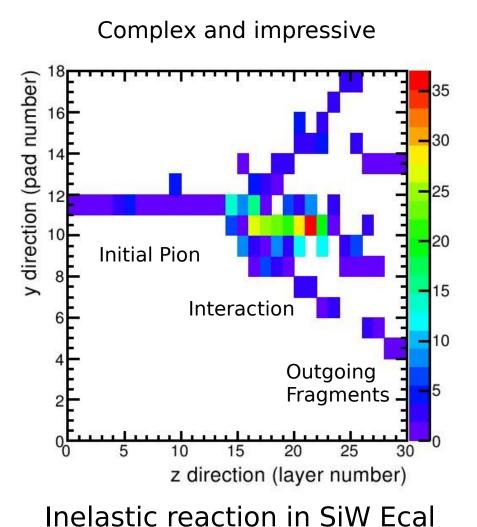
- Google passes the "purring test"
 - I6K cores watching I0M youtube stills for 3 days
 - completely unsupervised

The deep learning revolution

 Can we also learn physics by observing natural (or man-designed) phenomena?

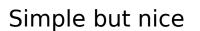
Granularity and hadronic cascades (Start of) Hadronic showers in the SiW Ecal

direction (pad number)



z direction (layer number)

Ejected Nucleon



Scattered Pion