Cloud
Ready for Bioinformatics?

C. Blanchet and C. Gauthey
Plateforme ‘Infrastructure Distribuée pour la Biologie’

Journée ‘Clouds pour le Calcul Scientifique, Paris Sud’ (Orsay, France)
27 novembre 2012
Bioinformatics Today

- Size of biological data are tremendous
 - Institut Sanger, UK, 5 PB
 - Beijing Genome Institute, China, 4 sites, 10 PB
 ➡ Huge data in lot of places

- Analysing such data became difficult
 - Scale-up of the analyses: gene/protein to complete genome/proteome, ...
 - Lot of different daily-used tools
 - That need to be combined in workflows
 - Usual interfaces: portals, Web services, federation,...
 ➡ Datacenters with ease of access/use

- Distributed resources
 - Experimental platforms: NGS, structural, ...
 - Bioinformatics platform
 ➡ Federation
Infrastructure in Biology
Infrastructure in Biology

Hello world! It's running...
To customize this page edit static/welcome.html

WWFSMD?
grow noodly appendages...

usegalaxy.org

This project is supported in part by NSF, NHGRI, and the Huck Institutes of the Life Sciences.
Infrastructure in Biology
Infrastructure in Biology

Web Services

The IBCP have integrated several tools for protein sequence analysis with the Web services technology. These Bioinformatics Web services provide scientists and developers with programmatic access to these tools. Our Web services are build upon standards from the W3C like SOAP, WSRF and HTTP. These tools can be use remotely through a graphical and integrated SOAP client like Taverna or Triana. You can also write your own SOAP client with languages such as Python & ZSI, C/C++ gSOAP, perl SOAP::Lite or Java.

Bioinformatics Tools available

<table>
<thead>
<tr>
<th>Tool</th>
<th>Type of analysis</th>
<th>Description</th>
<th>Documentation</th>
<th>Examples of clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClustalW</td>
<td>multiple alignment</td>
<td>wsd1, usage</td>
<td>PyZSI Tav2 (pict)</td>
<td></td>
</tr>
<tr>
<td>Multalin</td>
<td>multiple alignment</td>
<td>wsd1, usage</td>
<td>PyZSI Tav2 (pict)</td>
<td></td>
</tr>
<tr>
<td>BLAST</td>
<td>sequence similarity</td>
<td>wsd1, usage</td>
<td>PyZSI Tav2 (pict)</td>
<td></td>
</tr>
<tr>
<td>FastA</td>
<td>sequence similarity</td>
<td>wsd1, usage</td>
<td>PyZSI Tav2 (pict)</td>
<td></td>
</tr>
</tbody>
</table>
Infrastructure in Biology

Lot of tools and web services to treat and visualize lot of data.
The scene

• **Core facility providers**
 * Is it easy to deploy lot of (incompatible) tools?
 * To make them connected to public databases?
 * To limit transfer of huge data?
 * To provide users with their own computing resources?
 * With their own isolated storage?

• **Scientific users**
 * Is it easy to access/use these tools?
 * To adapt to your usage?
 * To get your/other tools deployed on a datacenter?
 * To combine them?
Integrate Bioinformatics Tools in Cloud

- Predefined virtual machines
 - small: few GB, easy to convert in most virtualization formats
- Installed and pre-configured with common bioinformatics tools
 - e.g. BLAST, Clustalw, ARIA, MEME, HMMer, TopHat, BWA, Samtools, etc.
IDB’s Cloud Workbench

- Demonstrate usefulness of cloud for Biology
- 13 turnkey bioinformatics appliances (as of Nov. 2012)
- Running since Sept. 2011, opened to Biology community
 - 184 cores, 536 GB RAM, 36 TB de stockage
 - Powered by Toolkit StratusLab (EU FP7 INFSO-RI-261552) Rel. 1.4
- Specific developments of a Web interface ready for biologists
Bioinformatics Appliances

ARIA 2.3

<table>
<thead>
<tr>
<th>Endorser</th>
<th>christophe.blanchet@ibcp.fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>N_zDsconV86gvkj2tt7D-ePv4M6</td>
</tr>
<tr>
<td>Created</td>
<td>2012-10-11T14:01:38Z</td>
</tr>
</tbody>
</table>

This appliance is part of the StratusLab bioinformatics usecase TOSCA[N (T]owards Stru[C]tural Assignme[N Improvement). The goal is to improve the determination of protein...

More...

CentOS 6

<table>
<thead>
<tr>
<th>Endorser</th>
<th>christophe.blanchet@ibcp.fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>BL8HibMjBB6uu231adQUkqyGtnl</td>
</tr>
<tr>
<td>Created</td>
<td>2012-09-27T12:04:15Z</td>
</tr>
</tbody>
</table>

A minimal installation for CentOS 6.x. Only root account configured. Firewall enabled with SSH and HTTP port open. SELinux disabled. Enhanced StratusLab contextualization used...

More...

BIO data

<table>
<thead>
<tr>
<th>Endorser</th>
<th>christophe.blanchet@ibcp.fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>FtCFZ7xOSuxKyzThGRX9Ex5cqR</td>
</tr>
<tr>
<td>Created</td>
<td>2012-09-24T08:56:26Z</td>
</tr>
</tbody>
</table>

Biological databases repository appliance built by iDB-IBCP (CNRS, Lyon, France. http://idee-b.ibcp.fr). The following databases are installed and available: SwissProt,...

More...

Mobyle

<table>
<thead>
<tr>
<th>Endorser</th>
<th>christophe.blanchet@ibcp.fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>NaCGZfy9NxClc3ISU158RHrG0ik</td>
</tr>
<tr>
<td>Created</td>
<td>2012-09-07T14:20:38Z</td>
</tr>
</tbody>
</table>

This appliance provides cloud users with a fully functional Mobyle portal. Mobyle is a framework and web portal.
Bioinformatics Appliances (2)

Protein identification

Endorser: christophe.blanchet@ibcp.fr
Identifier: H6KPqxYlZRdlhPhs2ZKiENiiVyx
Created: 2012-10-23T14:05:07Z

Bioinformatics virtual appliance for protein identification from mass spectrometry data. Contains OMSSA, X!Tandem, PeptideShaker and SearchGUI tools. Constructed by IDB...

More...

Galaxy portal

Endorser: christophe.blanchet@ibcp.fr
Identifier: OucGNN3bQD9FdlGRLqZ4ZNNHW
Created: 2012-10-11T15:11:59Z

Bioinformatics gateway appliance configured with the GALAXY portal, built by CNRS IBCP-IDB. You have also access to the pre-installed bioinformatics tools through the web...

More...

Hadoop MapReduce

Endorser: clement.gauthey@ibcp.fr
Identifier: PElfkAp5mOwULVh1KLsprFcjioS
Created: 2012-10-11T14:42:36Z

This appliance provides an easy way to deploy an Hadoop MapReduce cluster. You just need to run the bash script hadoop-create-cluster with a nodes list and an username in parameters and wait few...

More...

BIO compute node

Endorser: christophe.blanchet@ibcp.fr
Select your bioinformatics tools
Select your bioinformatics tools
Run Bioinformatics Cloud Instances

Bioinformatics Marketplace

- Sequence
- Structure
- NGS
- Galaxy
- ARIA
- (...)

IBCP's Cloud Resources

PaaS
- BLAST,
- Clustal,
- etc.

IaaS
- launch jobs
- ssh
- Master & Storage
 - VM ARIA
- Workers
 - VM CNS

Launch Instances

Create Instance

Choose the appliance
- Select: BioCompute

Configure your virtual machines
- Name: my virtual machine
- Type: xlarge (8 CPU, 27GB RAM)
- Number: 1
- Storage:
- Create appliance?
Manage your Cloud Instances
Data in cloud

Upload your data

Get your results

scp http

PaaS

BLAST, Clustal, etc.

IaaS

launch jobs

ssh

Master & Storage
VM ARIA

Workers
VM CNS

Bioinformatics Cloud

Portal

Public Data sources

UNIPROT
EMBL
PROSITE
Genomes
PDB

User Persistent data

shared (NFS)

pdisk (iSCSI)

scp http

scp http

scp http

Cloud Paris Sud, Orsay 27 Nov. 2012
Examples

• Structural Biology: the TOSCANI usecase
• Galaxy portal for NGS analyses
• Proteomics
Structural Biology

- **Towards Structural Assignment Improvement**
 - To improve the determination of protein structures based on Nuclear Magnetic Resonance (NMR) information with ARIA software
 - Large computational needs.
 - A NMR laboratory will not specially invest in building a cluster of about 100 nodes to be able to run such NMR structure calculations.
 - Flexibility of the cloud to deploy the different required bioinformatics tools can accelerate such a procedure.
 - Commercial interest in providing such tools to structural biologists on a “pay as you go” basis.

- **Endorsers:**
 - Institut Pasteur Paris
 - CNRS IBCP
IaaS deployment of ARIA

Significant increase in the number of calculated protein conformations improves the statistics on the NMR conformations and can help to overcome the ambiguity bottleneck.
Galaxy portal for NGS analyses
Proteomics

• Motivation
 • Mass spectroscopy platform
 • Running out of space on their local resources

• Protein identification
 • Mass spectroscopy experimental data
 • Reference databases: nr, Swiss-Prot
 • Screening tools: OMSSA, X!Tandem

• User interface
 • Remote display
 • Common GUIs
 • SearchGUI
 • PeptidShaker

source: PeptideShaker site
Conclusion

• Provide turnkey bioinformatics cloud services
 • Standard tools and pipelines
 • Ready to run on core facilities and commercial datacenters
 • Easier to transfer appliances than data (GB vs TB)

• Cloud infrastructure tightly connected to existing bioinformatics infrastructure
 • Public IDB’s bioinformatics cloud
 • Linked to public biological databases
 • Collaboration with national Research Infrastructures like the French RENABI GRISBI

• Ease the access
 • Web interface for cloud management
 • Usual scientific gateways
 • Persistent and large ubiquitous storage
What’s next?

• Help bioinformatics centres to provide academic and commercial community with bioinformatics services!

• Pre-defined bioinformatics appliances, webservices and portal (PaaS)
• Multi-nodes applications, e.g. ARIA, or comprehensive pipelines (IaaS)
• Referenced in a bioinformatics marketplace

• Ready to deploy on the future cloud infrastructure of the French Bioinformatics Institute (IA ReNaBi-IFB)
Questions?

Platform ‘Infrastructure Distributed for Biology - IDB’ acknowledges

Institut Pasteur: M Nilges, T Malliavin, F Mareuil
StratusLab partners

coop-funding by the European Community's Seventh Framework Programme (INFSO-RI-261552) and the French National Research Agency's Arpege Programme (ANR-10-SEGI-001)

http://idee-b.ibcp.fr