

StratusLab Cloud Distribution

StratusLab Tutorial (Orsay, France)
28 November 2012

Infrastructure as a Service (laaS)

Abstraction

- Access to remote virtual machines
- Aimed at service providers

Advantages

- Customized environment
- Simple and rapid access
- Access as "root"
- Pay-as-you-go model

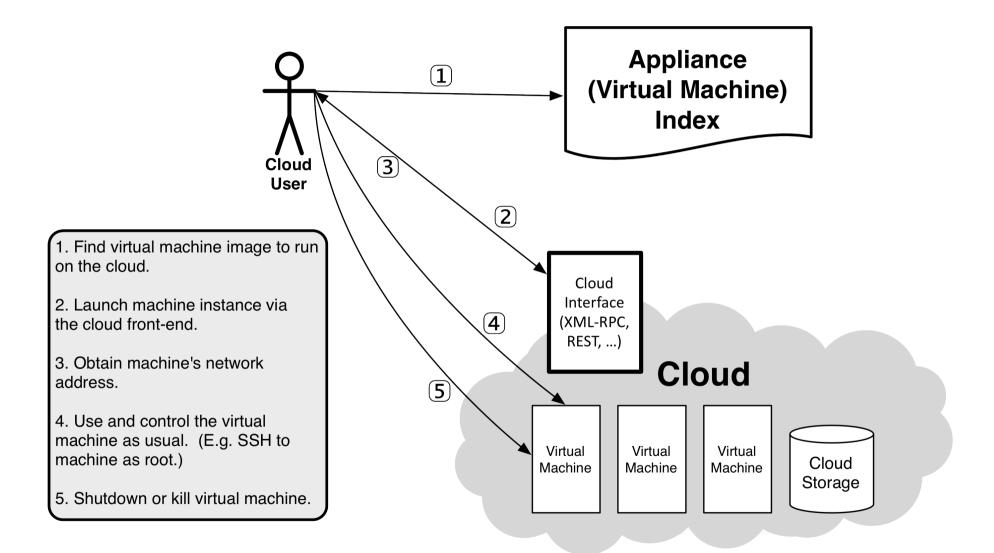
Disadvantages

- Non-standardized and multiple interfaces (vendor lock-in)
- Virtual machine creation is difficult and time-consuming

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (laaS)



Using an laaS Cloud

Why use a cloud?

Customized Environment

Operating system(s) suited to your application Your applications preinstalled and configured CPU, memory, and swap sized for your needs

Bioinformatics

Huge databases that grow quickly in size and number

Numerous Applications

Written for different environments and having different requirements

Variety of Databases

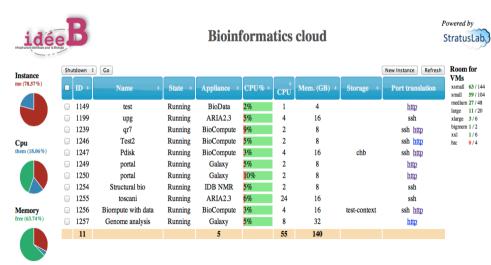
■ Different topics (genetics, proteins, ...), subject to continuous updates

Challenge: Creating the proper environment to use them simultaneously for a complete analysis.

Customized Appliances

Biocompute

- Common bioinformatics applications and libraries preinstalled
- BLAST, ClustalW2, FastA, ...


Customized portal

- Easy access to cloud infrastructure
- Streamlined for bioinformatics use

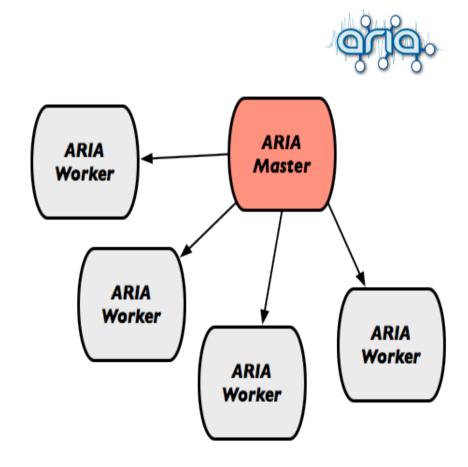
You are signed in as cblanchet | Settings | Home | Help | Sign out

Biodata

- Gives access to the latest updates of common databases
- SwissProt, Prosite, ...

IDB acknowledges co-funding by the European Community's Seventh Framework Programme (<u>INFSO-RI-261552</u>) and the French National Research Agency's Arpege Programme (<u>ANR-10-SEGI-001</u>)

- IDB | Mentions légales


TOSCANI

"TOwards StruCtural AssignmeNt Improvement"

 Improve the determination of protein structures based on Nuclear Magnetic Resonance (NMR)

ARIA

- Calculates structures based on NMR
- Variable resource utilization during calculation

Dynamic Provisioning

New storage and compute resources in minutes

Used resources freed just as quickly

Ideally suited to variable workloads

Dynamic Training Infrastructure

Benefits

- No need for a dedicated training infrastructure; create it as needed.
- Provides students each with their own personal playground

NARVAL

- Data acquisition software used by several nuclear physics institutes, like IPNO, INFN, GSI, Ganil, ...
- Understanding the system requires installing, using and customizing it

Successfully trained 20 NARVAL students using the StratusLab cloud infrastructure.

Dynamic Testing Infrastructure

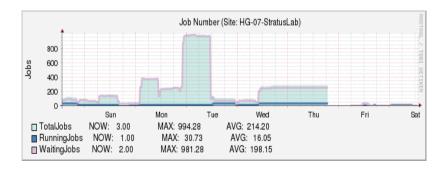
Developers Dream

- Easily test software in multiple environments
- Deploy full, independent test systems without interference from others

SlipStream

- Software engineering PaaS from SixSq allowing automated deployment and testing of complete software systems
- Uses the StratusLab cloud distribution for dynamic resource provisioning

Flexible Service Deployment


Deploy user-level, network-accessible services

Create domain-specific analysis platforms

High Energy Physics

HEP Experiments

- Have 1000s of users, analyze
 PB of data, and use 100s of sites around the world
- Develop and maintain their own software services and platforms to manage the data and control access to it

Grid Infrastructure


- Heavily used to support HEP data management and analysis
- Consists of a large number of complex services

Grid site in a StratusLab cloud

- Production site maintained for nearly 2 years
- Demonstrates cloud's ability to support complex services

StratusLab History

Informal collaboration to investigate running grid services on Amazon EC2 (2007)

Project (June 2010 to May 2012) cofunded by EC with 6 partners from 5 countries

Twitter: @StratusLab

Support: support@stratuslab.eu

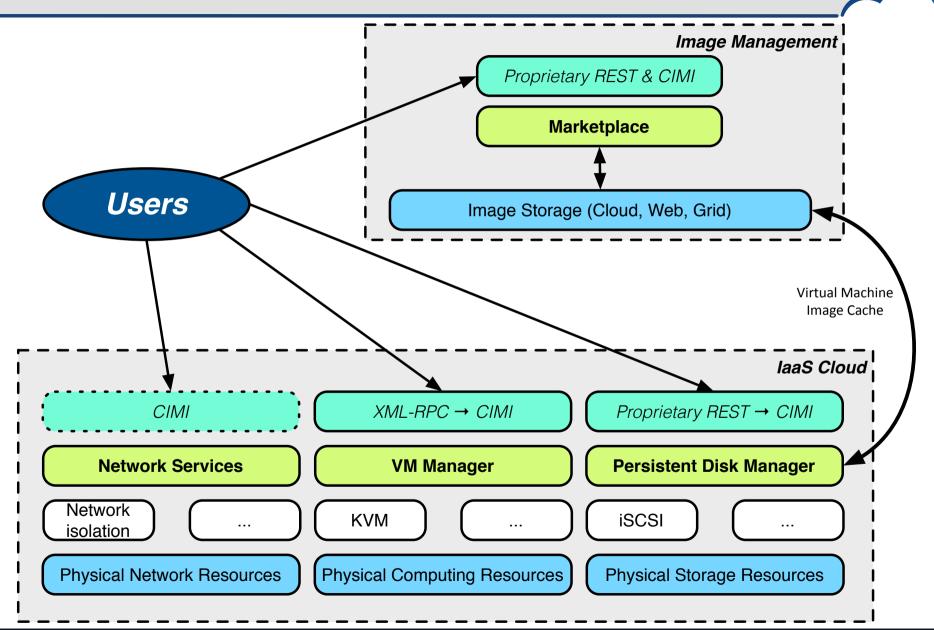
Source: http://github.com/StratusLab

Open collaboration to continue the development and support of the StratusLab software

StratusLab Principles

Simple to deploy and simple to use!

- Command line client for all major platforms
- Web interface for most services
- REST interfaces for programmers


Focused, practical development

- Develop for real needs of users
- Focus on providing laaS services well
- License (Apache2) that allows academic and commercial use

Maintain production quality with rapid evolution

- Iterative integration: always maintain working distribution
- Public releases approximately every 3 months
- Welcome contributions by institutes and individual developers

StratusLab Architecture

Compute Services

Virtual Machine Management

- OpenNebula (opennebula.org) provides core of VMM (start, stop, kill)
- Plug-in architecture allows use of multiple hypervisors (kvm, ...)

Features

- StratusLab-specific caching allows low-latency startup of VMs
- Quarantine of stopped images for forensic analysis
- Detailed logging of user and resource information
- Improved error feedback from plug-ins to user
- Integration with StratusLab user management

Storage Services

Persistent (Read-Write) Disks

- Allows the storage of service state or user data
- Mounted as a disk on VMs
- Disks are persistent and have a lifecycle independent of a single VM
- Can be mounted by single VM at any time
- Only available within a single cloud instance

Static (Read-Only) Disks

- Useful for distribution of quasi-static databases
- Handled and shared like VM images via Marketplace

Volatile (Read-Write) Disks

- Useful for temporary (!) data storage
- Data will disappear when VM instance is destroyed

Other Storage Types

File-based Storage

- Normal client tools can be installed in VMs
- Access services normally from VM (e.g. tools for SRM)
- May provide CDMI interface to StratusLab storage

Object Storage

- Simple object storage, usually minimal hierarchy and chunked data
- StratusLab works well with Swift from OpenStack

Key-value Pair Database

- Exposes simple API for "database" of key-value pairs (e.g. Cassandra)
- Can deploy VM with persistent disk to provide this service

Unlikely to see StratusLab implementations, but distribution may facilitate co-deployment of such services from others.

Networking Services

IP Address Classes & Selection

Public: Internet-accessible services

■ Local: Batch systems or parallel calculations

Private: Slaves in pilot job systems

IPv6

- Software supports IPv6 networking for VMs
- Not available on reference infrastructure yet

Future Services

- User specified firewalls
- IP address reservation
- Dynamic VLANs

Image Management

Machine image creation is a barrier to cloud adoption

- Creating virtual machine images is time-consuming
- Ensuring that machines are secure and correct is difficult
- Sharing existing machines lowers this barrier

Marketplace facilitates sharing of images

- Registry of metadata for machine & disk images
- Image contents are kept in cloud, grid, or web storage
- Supports trust between creators, users, and administrators

Benefits

- End-users: browse and use existing images for their analyses
- Creators: publicize their work and attract larger user base
- Cloud Admins.: Use metadata to evaluate trustworthiness of images

Appliances

Virtual machines with pre-installed/configured services

- Makes it easier to get started quickly using cloud resources
- Good way to package software to avoid installation hurdles

Utilities for making and publishing customized images

- Security guidelines
- Incremental changes to base image
- Marketplace for publication

StratusLab supported appliances

- Base images: ttylinux, CentOS, OpenSuSE, Ubuntu, Debian
- Bioinformatics: Data server and analysis images

User Management

Authn/Authz

- Authentication done through common proxy service
- Allows username/password from LDAP or from file
- Allows use of grid certificates and VOMS proxies
- Authorization done in individual services
- Delegation currently not needed/used (will change if machine or disk images are protected)

Registration Service

- Web service for user registration
- LDAP DB for easy integration with cloud and other services

Accessing Services

StratusLab Client

- Command line scripts in python/java with minimal dependencies
- Fully tested on Mac OSX and Linux
- Core functionality works on Windows
- Be sure to use client version corresponding to cloud infrastructure

Programming Interfaces

- All services except VMM provide proprietary REST interface
- VMM exposes OpenNebula XML-RPC interface
- Transitioning to using CIMI for all services (incl. VMM)
- StratusLab plugin for rOCCI impl. of OCCI is available

Web Interfaces

- Provided for all services except virtual machine management
- Expect to have complete, unified interface after transition to CIMI

Cloud Infrastructures

Reference Cloud Infrastructure

- Allow users to test a StratusLab cloud without having to install one
- Two sites: LAL (Orsay, France) and GRNET (Athens, Greece)
- Registration Service accounts work on both sites
- Problems, ask questions via <u>support@stratuslab.eu</u>

Other StratusLab Infrastructures

- South Africa
- Vietnam
- UK
- Bordeaux
- . . .

Questions and Discussion

Exercises

StratusLab Website

- Find information for system administrators
- Find information for users

Code

- http://github.com/StratusLab
- Can you find the code related to the various types of resources?
- Any code that you can't understand in a laaS context?

http://www.stratuslab.eu

Copyright © 2012, Members of the StratusLab collaboration.

This work is licensed under the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/).

