

Experimental results on $B \rightarrow D^{(*)}\pi\pi$

Thomas Latham

Workshop on *B* decay into *D*** 27th November 2012

THE UNIVERSITY OF WARWICK

Overview

- Quick recap of motivations
- Outline the experimental methods and associated challenges
- Present the experimental results from BaBar on $B \rightarrow D\pi\pi$ decays
 - Emphasis on D** intermediate states
 - Include comparisons with Belle results but details of Belle analyses given by D. Matvienko tomorrow
- Show some recent results and future prospects from LHCb

- The $B \rightarrow D^{(*)}\pi\pi$ Dalitz plots can contain:
 - $D^{**\pi}$ contributions
 - Colour-suppressed D⁰h⁰ decays
- As we've heard already in this workshop, there is some discrepancy between theory and experiment in $B \rightarrow D^{**}/v$ decays
- The BFs of $B \rightarrow D^{**}\pi$ transitions are of interest to provide more input into this issue (see earlier talk by Alain Le Yaouanc)
- Isospin symmetry relates the BFs of the various $B \rightarrow D\rho$ decays
 - Combining such measurements can give insight into strong interaction phases
- In the neutral B decays can perform a time-dependent analysis to measure sin(2β) and cos(2β) if D is reconstructed in decay to a CP eigenstate
 - See, for example, TL and T. Gershon, J. Phys. G 36, 025006 (2009)
- Can also measure $sin(2\beta+\gamma)$ from the time-dependent $B^0 \rightarrow D^{**}\pi$ decay rate if the *D* is reconstructed in a non-*CP* eigenstate

- In charged *B* decays there are two tree level diagrams, colour allowed (top) and colour suppressed (bottom)
- Slightly complicates the comparison with the semi-leptonic decays since only the first contributes in that case

- In neutral *B* decays there are again two tree level diagrams (both colour allowed)
- But one is heavily CKM suppressed and gives opposite sign D**
 - (and sensitivity to CKM angle γ)
- Simpler comparison with the semi-leptonic decays

Analysis Overview

- Reconstruct D^0 and D^+ candidates in their decays to $K^-\pi^+(\pi^+\pi^-)$ and $K^-\pi^+\pi^+$
- Optionally reconstruct D^* candidates in decay to $D\pi$
- Form *B* candidates from *D*/*D** and two additional pions
- Apply particle ID to pions and D daughters
- Suppress continuum background with event-shape variables
- Fit to kinematic and Dalitz-plot variables determines signal and background yields plus complex amplitude coefficients

Analysis Variables – Topological

- Light quark continuum cross section $\sim 3x \ b\overline{b}$
- *B* mesons produced almost at rest since just above threshold
- Use event topology to discriminate
- Combine variables in a Multi-Variate Analyser (MVA) such as a Neural Network (NN)

Analysis Variables – Kinematic

Make use of precision kinematic information from the beams.

Dalitz-plot Analysis

- Dalitz plot is a representation of the $B \rightarrow PPP$ phase space
- Structure in the DP gives information on resonance masses, widths and spins, relative phases, interference etc.
- Model each contribution to the DP as a separate amplitude with a complex coefficient (isobar model)
- Amplitude model must be symmetrised if identical particles are present in the final state

Dalitz-plot Analysis

- Also need to account for the following effects and their possible Dalitz-plot dependence:
 - signal reconstruction efficiency
 - fraction of misreconstructed signal events
 - experimental resolution on the Dalitz-plot position of each of those categories
 - background event yields

$B^- \rightarrow D^+ \pi^- \pi^-$

- Both Belle and BaBar have studied this mode
 - Belle: 65M BB pairs,
 PRD 69, 112002 (2004)
 - BaBar: 383M BB pairs,
 PRD 79, 112004 (2009)
- Contributions found from
 - two D** states:
 - D₂*0 (~30%) and D₀*0 (~60%)
 - off-shell $B \rightarrow D^*(2007)\pi$ and $B \rightarrow B^*\pi$ decays
 - D_v^* (~10%) and B_v^* (~5%)
 - P-wave non-resonant Dππ
 (BaBar only) (~5%)

27/11/2012

۲

 $B^- \rightarrow D^+ \pi^- \pi^-$

$B^- \rightarrow D^+ \pi^- \pi^-$

Measured quantity	Belle - PRD 69, 112002 (2004)	BaBar - PRD 79, 112004 (2009)
$BF(B^- \rightarrow D^+ \pi^- \pi^-)$	$(1.02 \pm 0.04 \pm 0.15) \times 10^{-3}$	$(1.08 \pm 0.03 \pm 0.05) \times 10^{-3}$
D_2^* Mass	$(2461.6 \pm 2.1 \pm 0.5 \pm 3.3) \text{ MeV/c}^2$	(2460.4 ± 1.2 ± 1.2 ± 1.9) MeV/c ²
D_2^* Width	(45.6 ± 4.4 ± 6.5 ± 1.6) MeV	(41.8 ± 2.5 ± 2.1 ± 2.0) MeV
D_2^* Product BF	$(3.4 \pm 0.3 \pm 0.6 \pm 0.4) \times 10^{-4}$	$(3.5 \pm 0.2 \pm 0.2 \pm 0.4) \times 10^{-4}$
D_0^* Mass	(2308 ± 17 ± 15 ± 28) MeV/c ²	(2297 ± 8 ± 5 ± 19) MeV/c ²
D ₀ * Width	(276 ± 21 ± 18 ± 60) MeV	(273 ± 12 ± 17 ± 45) MeV
D_0^* Product BF	$(6.1 \pm 0.6 \pm 0.9 \pm 1.6) \times 10^{-3}$	$(6.8 \pm 0.3 \pm 0.4 \pm 2.0) \times 10^{-3}$
D_2^* and $D_0^* \Delta \phi$	$(-2.37 \pm 0.11 \pm 0.08 \pm 0.10)$ rad	(–2.07 ± 0.06 ± 0.09 ± 0.18) rad

The two experiments give very compatible results for all D^{**} quantities

$B^- \rightarrow D^+ \pi^- \pi^-$

- Systematic uncertainties mostly dominated by the background parameterisation
- Event selection and fit bias also significant for some parameters, particularly the width of the D₀*
- Model uncertainties estimated by varying the Blatt-Weisskopf barrier radii and trying alternative models, removing the less significant components and adding other NR components

$B^0 \rightarrow D^0 \pi^+ \pi^-$

- Both Belle and BaBar have studied this mode
 - Belle: 388M BB pairs,
 PRD 76, 012006 (2007)
 - BaBar: preliminary results, from 471M BB pairs, arXiv:1007.4464 [hep-ex]
- Analysis is more complicated due to presence of π⁺π⁻ resonances and physical D*(2010)⁺ near threshold
- Contributions found from
 - two D^{**} states: D_2^{*+} and D_0^{*+}
 - virtual D_v* (~10%)
 - $-\rho$ (770) and f₂(1270)
 - various S-wave components

 The description of the S-wave is the main difference between the BaBar and Belle analyses

 $B^0 \rightarrow D^0 \pi^+ \pi^-$

- BaBar uses a K-matrix approach to model the $\pi^+\pi^-$ S-wave
- Belle uses a sum of Breit-Wigners: $f_0(600)$, $f_0(980)$ and $f_0(1370)$
- BaBar includes a $D\pi$ NR in addition to the D_0^* to model enhancement at low invariant mass
 - Find strong destructive interference between these $D\pi$ S-wave contributions

$B^0 \rightarrow D^0 \pi^+ \pi^-$

- Projections of the BaBar data with the fit model superimposed
- ➤ Total fit
- Continuum background
- Total background (continuum + B decays)
- Signal component

$B^0 \rightarrow D^0 \pi^+ \pi^-$

Branching Fraction	BABAR Value (10^{-4})	Belle Value (10^{-4})
Inclusive $B^0 \to \overline{D}{}^0 \pi^+ \pi^-$	$8.81 \pm 0.18 \pm 0.76 \pm 0.78 \pm 0.11$	$8.4\pm0.4\pm0.8$
$B^0 \to D_2^*(2460)^- \pi^+ \times D_2^*(2460)^- \to \overline{D}{}^0 \pi^-$	$1.80 \pm 0.09 \pm 0.19 \pm 0.37 \pm 0.02$	$2.15 \pm 0.17 \pm 0.29 \pm 0.12$
$B^0 \to D_0^*(2400)^- \pi^+ \times D_0^*(2400)^- \to \overline{D}{}^0 \pi^-$	$2.18 \pm 0.23 \pm 0.33 \pm 1.15 \pm 0.03$	$0.60 \pm 0.13 \pm 0.15 \pm 0.22$
$B^0 \to ho(770)^0 \overline{D}{}^0$	$2.98 \pm 0.19 \pm 0.53 \pm 0.93 \pm 0.04$	$3.19 \pm 0.20 \pm 0.24 \pm 0.38$
$B^0 \to f_2(1270)\overline{D}^0$	$1.02 \pm 0.12 \pm 0.18 \pm 0.36 \pm 0.03$	$1.20 \pm 0.18 \pm 0.21 \pm 0.32$
$B^0 \to D_v^*(2010)^- \pi^+ \times D_v^*(2010)^- \to \overline{D}{}^0 \pi^-$	$1.39 \pm 0.08 \pm 0.16 \pm 0.35 \pm 0.02$	0.88 ± 0.13
$D\pi$ nonresonant	$1.62 \pm 0.21 \pm 0.41 \pm 1.21 \pm 0.02$	
K matrix total	$2.26 \pm 0.22 \pm 0.34 \pm 0.58 \pm 0.03$	

- Inclusive and sub-mode BF measurements in good agreement except for D*_v(2010)⁻π⁺ and D*₀(2400)⁻π⁺, where BaBar see larger values than Belle
- Direct comparison complicated due to different S-wave parameterisations

Recent **LHC**

results

- LHCb recently published observation of $B^0 \rightarrow D^0 K^+ K^-$ and evidence for the B_s decay to the same final state
 - PRL 109, 131801 (2012)
- Both of these BFs were relative measurements, with the decay $B^0 \rightarrow D^0 \pi^+ \pi^-$ acting as the normalisation channel
- Approximately 8000 D⁰π⁺π⁻ signal events were found c.f.
 5000 in the full BaBar dataset
- The signal is also very clean see upper right plot

- Programme of $B \rightarrow Dhh$ measurements underway
- Hope for Dalitz-plot analyses of several modes on combined 2011-2012 dataset = 3 fb⁻¹
- Should have, e.g. ~40k $B^0 \rightarrow D^0 \pi^+ \pi^-$ signal events and similar numbers in the B^+ decays
- With these very large statistics, other modes such as $B^- \rightarrow D^+ K^- \pi^-$ (which may be experimentally very clean) could also be studied
- Studies of D_s^{**} resonances also underway, see recent observation of $B_s \rightarrow D_{s1}(2536)^+\pi^-$

- arXiv:1211.1541 [hep-ex]

Summary

- B factories have established signals for $B \rightarrow D^{**}\pi$ decays in both charged and neutral *B* decays to $D^{(*)}\pi\pi$ final states
- The charged B decays are experimentally cleaner and BaBar and Belle results are in excellent agreement
- The neutral *B* decays require greater statistics to fully disentangle the numerous contributions to the Dalitz plot
- Future prospects at LHCb look very promising!

BACKUP

PEP-II and BaBar

LHCb data acquisition

- Need precise

 measurements of CKM
 matrix elements using
 different quark level
 transitions to test the
 Standard Model
- To maximise precision and remove ambiguities measure cos(2β) as well as sin(2β)

• Idea to measure sin(2 β) and cos(2 β) in timedependent DP analysis of $B^0 \rightarrow D_{CP} \pi^+ \pi^$ discussed in outline in

J. Charles et al. Phys. Lett. B 425, 375 (1998)
 [Erratum-ibid. B 433, 441 (1998)]

- Idea developed and feasibility studies presented in
 - T. Latham and T. Gershon, J. Phys. G 36, 025006 (2009)

Extended DP Analysis

- The $B \rightarrow D^* \pi \pi$ modes have extra degrees of freedom due to the spin of the D^*
- Can consider, for example
 - the angle between the pions from the D** and D* decays in the D* rest frame
 - the azimuthal angle of the pion from the D^* wrt the B $\rightarrow D^*\pi\pi$ decay plane
- The different polarisation states of any $\pi^+\pi^-$ resonances must also be accounted for

$B \rightarrow D^* \pi \pi$

- Only measurements from Belle so far
- Both charged and neutral *B* decays studied:
 PRD 69, 112002 (2004)
 BELLE-CONF-0460 (2004)
- Here the 1⁺ states D₁ and D₁' contribute instead of the 0⁺ D₀*
- Will hear more on this tomorrow morning from D. Matvienko

 $B^- \rightarrow D^+ \pi^- \pi^-$

Systematics and Model Errors

Systematic Source	$\frac{\Delta \mathcal{B}(B^- \to D^+ \pi^- \pi^-)}{\mathcal{B}(B^- \to D^+ \pi^- \pi^-)} \ (\%)$			
Number of B^+B^- events	1.6			
Tracking efficiencies	2.5			
PID	1.5			
ΔE background shape	1.3			
D^+ branching fraction	2.3			
Fit models	0.7			
Fit bias	1.0			
Total Systematics	4.4			

TABLE IV: Summary of systematic uncertainties (relative errors in %) in the measurement of the total branching fraction.

TABLE V: Summary of systematic uncertainties in the masses, widths and fit fractions of the D_2^{*0} and D_0^{*0} and the phase of D_0^{*0} .

Systematic Source	$\Delta m_{D_2^{*0}}$	$\Delta \Gamma_{D_2^{*0}}$	$\Delta m_{D_0^{*0}}$	$\Delta \Gamma_{D_0^{*0}}$	$\Delta f_{D_2^{*0}}$	$\Delta f_{D_0^{*0}}$	$\Delta \phi_{D_0^{*0}}$
	(MeV/c^2)	(MeV)	(MeV/c^2)	(MeV)	(%)	(%)	(rad)
Background parameterization	1.0	1.1	3	5	1.2	0.0	0.04
Background fraction	0.1	0.4	2	1	0.4	0.4	0.00
Event selection	0.6	1.6	1	14	0.3	0.8	0.08
Fit bias	0.3	0.7	4	8	0.7	1.4	0.02
PID efficiency	0.0	0.1	0	0	0.0	0.1	0.01
Total systematic error	1.2	2.1	5	17	1.5	1.7	0.09
Fit models	1.3	0.7	15	40	1.5	17.2	0.07
$r \operatorname{constant}$	1.4	1.9	12	21	3.8	7.8	0.17
Total model-dependent error	1.9	2.0	19	45	4.1	18.9	0.18