Coupling to the radially excited charm

F.Sanfilippo In collaboration with
D.Becirevic, B.Blossier and A.Gerardin

Laboratoire de Physique Theorique

Universite de Paris Sud XI, Orsay, France

November 28, 2012

Summary

Subject of our study

- Radially excited $D_{(s)}$ meson
- First attempt to determine mass and coupling:
- on the lattice
- in the continuum limit
- Caution: results still preliminary!

Contents

(1) Phenomenological motivation
(2) Review on theoretical predictions
(3) Lattice methods to determine excited states properties
(9) Some preliminary results at finite lattice spacing
(6) Conclusion and perspective

Phenomenological motivation

BaBar studies of $D^{*} \pi$ production invariant mass distribution

Two peaks reported (arXiv:1009.2076):

$$
\begin{array}{ll}
m_{1}=2539 \pm 8 \mathrm{MeV}, & \Gamma_{1}=130 \pm 18 \mathrm{MeV} \\
m_{2}=2752 \pm 3 \mathrm{MeV}, & \Gamma_{2}=71 \pm 13 \mathrm{MeV}
\end{array}
$$

m_{1} believed to be the $2 S$ radially excited D^{\prime}
Analysis of $B^{-} \rightarrow D_{s}^{(*)+} K^{-} \ell^{-} \bar{\nu}_{\ell}$ and of $B^{-} \rightarrow D_{s}^{(*)+} K^{-} \pi^{-}$

- BaBar (2010), Belle (2012): $\mathcal{B}\left(B^{-} \rightarrow D_{s}^{(*)+} K^{-} \ell^{-} \bar{\nu}_{\ell}\right) \sim 0.06 \%$
- Belle: peak in invariant mass distribution of $D_{s}^{(*)+} K^{-}$:
- around 2.6 GeV when associated to leptons
- around $2.8-3.0 \mathrm{GeV}$ when associated to π

Identification of radial excitation

- How to interpret the peaks: which one is the radial excitation?
- What is its coupling?

Phenomenological motivation \& Theoretical predictions

Relevance of the $D^{\prime 0}$ coupling determination
$A_{\text {fact. }}\left(B^{-} \rightarrow \bar{D}^{\prime 0} \pi^{-}\right)=\frac{G_{F}}{\sqrt{2}} V_{c b} V_{u d}^{*}\left[a_{1} f_{\pi}\left(m_{B}^{2}-m_{D^{\prime}}^{2}\right) F_{0}^{B \rightarrow D^{\prime}}\left(m_{\pi}^{2}\right)+a_{2} f_{D^{\prime}}\left(m_{B}^{2}-m_{\pi}^{2}\right) F_{0}^{B \rightarrow \pi}\left(m_{D^{\prime}}^{2}\right)\right]$
If the ratio of class- 1 and class- 3 decays was measured:
$\rightarrow f_{D^{\prime}}$ would be needed for theoretical prediction

Theoretical studies of D^{\prime} system

- Mass of D^{\prime} :
- Godfrey, Isgur, 1985: $m_{D^{\prime}}=2.58 \mathrm{GeV}$ with quark model
- Mohler and Woloshyn (arXiv:1103.5506) on the lattice: single lattice spacing, various sea quark masses: $m_{D^{\prime}}=2.6(3) \mathrm{GeV}$
- General statement on $f_{D^{\prime}}$:
$f_{D^{\prime}}>f_{D}$ (from covariant quark model, lattice QCD in the static limit)

Further studies are needed!

Motivation: why to use lattice QCD?

Basically because... Lattice QCD = QCD!

- Non-perturbative computation starting from first principles
- Reach of the method limited only by available computing power

Last years developments (since 2005)

- Unquenching of Up and Down quarks (assuming isospin symmetry)
- Extrapolation toward physical pion mass (not directly accessible normally)
- Extrapolation toward the continuum limit

Nowadays working area and next-to-come developments

- Full unquenching of all the quarks (also beyond isospin symmetry)
- Calculation performed directly at the physical pion mass
- Improved continuum limit thanks to more sophisticated regularizations
- Electromagnetic corrections taken into account

Our Setup: Simulation Parameters

Fermionic part: Twisted mass QCD at maximal twist

$$
S^{\text {ferm }}=\bar{\psi}^{\mathrm{a}}\left[(1 / 2 \kappa+K[U]) \delta^{a b}+\mathrm{i} \mu \gamma_{5} 5_{3}^{\mathrm{ab}}\right] \psi^{b}, \quad a, b \in\left\{\psi_{\text {up }}, \psi_{\text {down }}\right\}
$$

Original Wilson formulation, with additional mass term No additive mass renormalization, automatic \mathcal{O} (a) improvement

Gauge field configurations

- Provided by European Twisted Mass Collaboration 9 countries, ~ 20 universities and research centers
- Unquenched Up Down quarks
- Publicly available on International Lattice Data Grid

Subset used for this work

- Single lattice spacing (4 available)
- Single light quark mass (pion mass $\sim 400 \mathrm{MeV}$)

How to compute decay constants

Decay constant computation when $D^{\left({ }^{(}\right)}$at rest

$$
\langle 0|(A+\not \subset)_{0}^{r e n}\left|D^{(\prime)}(p=0)\right\rangle=M_{D} f_{D}, \quad\langle 0| V_{0}^{\text {ren }}\left|D^{(\prime)}\right\rangle=0
$$

With Twisted mass regularization

$$
\langle 0| A_{0}^{\text {ren }}\left|D^{\left({ }^{\prime}\right)}\right\rangle=\frac{m_{l}+m_{c}}{M_{D}}\langle 0| P\left|D^{\left({ }^{\prime}\right)}\right\rangle, \quad A_{0}=\bar{c} \gamma_{0} \gamma_{5} d, P=i \bar{c} \gamma_{5} d
$$

Decay constant is expressed in terms of RGI product

$$
f_{\left.D^{\prime}\right)}=\frac{\left(m_{l}+m_{c}\right)\langle 0| P\left|D^{\left({ }^{\prime}\right)}\right\rangle}{M_{\left.D^{\prime}\right)}^{2}}
$$

We must compute Pseudoscalar matrix element between $|0\rangle$ and $|D\rangle$:

$$
Z_{\left.D^{\prime}\right)} \equiv\langle 0| P\left|D^{\left({ }^{\prime}\right)}\right\rangle
$$

this can be obtained from 2 points correlation function fit

Spectral decomposition of two points functions

Basic ingredient: two points correlation functions

$$
\begin{gathered}
O(x) \equiv \bar{c}(x) \gamma_{5} q(x) . \quad q=\{u / d, s, c\} \\
C(\tau)=\sum_{\vec{x}}\left\langle O^{\dagger}(\vec{x}, \tau) O(\overrightarrow{0}, 0)\right\rangle=
\end{gathered}
$$

Determination of ground state properties

 Inserting the sum of projectors over all the states $\sum_{i}\left|D^{(i)}\right\rangle\left\langle D^{(i)}\right|$:$$
\left.C(\tau)=\sum_{i}|\langle 0| O| D^{(i)}\right\rangle\left.\right|^{2} \frac{e^{-M_{D^{(i)}} \tau}}{2 M_{D^{(i)}}} \xrightarrow{\tau \rightarrow \infty}|\underbrace{\langle 0| O|D\rangle}_{Z_{D}}|^{2} \frac{e^{-M_{D^{\prime} \tau}}}{2 M_{D}}
$$

Information on excited states extracted by looking at intermediate times:

$$
0 \ll t \ll t_{\text {ground }}
$$

Two points correlation function computation

Wick contraction

$C(\tau)=\sum_{\vec{x}}\left\langle O_{\Gamma}^{\dagger}(\vec{x}, \tau) O_{\Gamma}(\overrightarrow{0}, 0)\right\rangle \underset{\text { Wick }}{\overline{=}} \operatorname{Tr}\left[\left\ulcorner S_{l}(\vec{x}, \tau ; \overrightarrow{0}, 0)\left\ulcorner S_{c}(\overrightarrow{0}, 0 ; \vec{x}, \tau)\right]\right.\right.$
Solving Dirac equation on gauge background \rightarrow full quark propagator

$$
D_{q}(y, x) \cdot S_{q}(x, 0)=\delta_{y, 0} \quad D_{q}=\left(\frac{1}{2 \kappa}+K[U]\right) 1+i m_{q} \gamma_{5} \tau_{3}
$$

Combine 2 propagators with Dirac structures $\rightarrow 2$ points functions

Two points correlation function (log scale)

Effective mass: $M_{\text {eff }}(\tau) \equiv \log C(\tau+1)-\log C(\tau)$

Access to excited states

Coming back to spectral decomposition

$$
C(t) \equiv \sum_{\vec{x}}\left\langle O^{\dagger}(\vec{x}, \tau) O(\overrightarrow{0}, 0)\right\rangle=\left.\sum_{P}|\underbrace{\langle 0| O|P\rangle}_{Z(P)}|\right|^{2^{-M_{p} t}} \frac{2 M_{P}}{2 M^{-}}
$$

Limiting to two lightest states

$$
C(t)=Z^{2}(D) \frac{e^{-M_{D} t}}{2 M_{D}}+Z^{2}\left(D^{\prime}\right) \frac{e^{-M_{D^{\prime}} t}}{2 M_{D^{\prime}}} \underset{t \rightarrow \infty}{\longrightarrow} Z^{2}(D) \frac{e^{-M_{D} t}}{2 M_{D}}
$$

We determine $Z(D)$ and M_{D} by fitting $C(t)$ at large time
Subtract D state contribution from $C(t)$

$$
C^{\prime}(t) \equiv C(t)-Z^{2} \text { fit }(D) \frac{e^{-M_{D}^{f i t} t}}{2 M_{D}^{\text {fit }}} \underset{t \rightarrow \infty}{\longrightarrow} Z^{2}\left(D^{\prime}\right) \frac{e^{-M_{D^{\prime}} t}}{2 M_{D^{\prime}}}
$$

$C^{\prime}(t)$ effective mass

Eigenvalue problem

How to build different interpolating operators

- $O_{i}(x)=\bar{\Psi}_{i}(x) \gamma_{5} \Psi_{i}(x)$ built in terms of $\Psi_{i}(x)=G_{i}(x, y) \psi(y)$
- G is a convolution operator (smearing)

Consider a $n \times n$ matrix of correlation functions

$$
C_{i j}(\tau) \equiv \sum_{\vec{x}}\left\langle O_{i}^{\dagger}(\vec{x}, \tau) O_{j}(\overrightarrow{0}, 0)\right\rangle=\sum_{P} \underbrace{\langle 0| O_{i}^{\dagger}|P\rangle}_{Z_{i}^{*}(P)} \underbrace{\langle P| O_{j}|0\rangle}_{Z_{j}(P)} \frac{e^{-M_{P} \tau}}{2 M_{P}}
$$

Diagonalization of correlation matrix

It can be shown that eigenvalues $\lambda_{k}(t)$ of matrix $C(t)$ behaves like:

$$
\lambda_{0}(\tau)=Z_{D}^{*} \exp \left(-M_{D} \tau\right), \lambda_{1}(\tau)=Z_{D^{\prime}}^{*} \exp \left(-M_{D^{\prime}} \tau\right) \ldots
$$

$\vec{v}_{k}(t)$ define "optimal" interpolating operator coupling uniquely to state k :

$$
O_{D}=\vec{v}_{0} \vec{O}, \quad O_{D^{\prime}}=\vec{v}_{1} \vec{O}, \ldots
$$

Determining $f_{D^{\prime}}: R_{D^{\prime}}(\tau)=\left(\vec{v}_{1}^{T} \cdot C(\tau) \cdot \vec{v}_{1} \times e^{M_{D^{\prime} \tau}}\right)^{-1 / 2}$

Conclusions

Preliminary results

- From the value of $Z_{D^{\prime}}$ and $Z_{D}: \quad \frac{f_{D^{\prime}}}{f_{D}}=0.78(6)$
- Relative mass difference:

$$
\frac{M_{D^{\prime}}-M_{D}}{M_{D}}=59(6) \%
$$

Caveat: everything very preliminary!

- Single lattice spacing
- Not extrapolated to the physical pion mass

Future development

- Analyze the other 3 lattice spacings and take the chiral extrapolation
- All correlators already computed: expect the results in the next weeks

> Thank you!

