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Summary

Subject of our study
Radially excited D(s) meson
First attempt to determine mass and coupling:

on the lattice
in the continuum limit

Caution: results still preliminary!
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Phenomenological motivation

BaBar studies of D∗π production invariant mass distribution
Two peaks reported (arXiv:1009.2076):

m1 = 2539± 8MeV, Γ1 = 130± 18MeV
m2 = 2752± 3MeV, Γ2 = 71± 13MeV

m1 believed to be the 2S radially excited D ′

Analysis of B− → D(∗)+
s K−`−ν̄` and of B− → D(∗)+

s K−π−

BaBar (2010), Belle (2012): B(B− → D(∗)+
s K−`−ν̄`) ∼ 0.06%

Belle: peak in invariant mass distribution of D(∗)+
s K−:

around 2.6 GeV when associated to leptons
around 2.8− 3.0 GeV when associated to π

Identification of radial excitation
How to interpret the peaks: which one is the radial excitation?
What is its coupling?



Phenomenological motivation & Theoretical predictions

Relevance of the D ′0 coupling determination
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If the ratio of class-1 and class-3 decays was measured:
→ fD′ would be needed for theoretical prediction

Theoretical studies of D ′ system
Mass of D ′:

Godfrey, Isgur, 1985: mD′ = 2.58 GeV with quark model
Mohler and Woloshyn (arXiv:1103.5506) on the lattice:
single lattice spacing, various sea quark masses: mD′ = 2.6(3) GeV

General statement on fD′ :
fD′ > fD (from covariant quark model, lattice QCD in the static limit)

Further studies are needed!



Motivation: why to use lattice QCD?

Basically because... Lattice QCD = QCD!
Non-perturbative computation starting from first principles
Reach of the method limited only by available computing power

Last years developments (since 2005)
Unquenching of Up and Down quarks (assuming isospin symmetry)
Extrapolation toward physical pion mass (not directly accessible normally)

Extrapolation toward the continuum limit

Nowadays working area and next-to-come developments
Full unquenching of all the quarks (also beyond isospin symmetry)
Calculation performed directly at the physical pion mass
Improved continuum limit thanks to more sophisticated regularizations
Electromagnetic corrections taken into account



Our Setup: Simulation Parameters

Fermionic part: Twisted mass QCD at maximal twist

S ferm = ψ̄a
[
(1/2κ+ K [U]) δab + iµγ5τ

ab
3

]
ψb, a, b ∈ {ψup, ψdown}

Original Wilson formulation, with additional mass term
No additive mass renormalization, automatic O (a) improvement

Gauge field configurations

Provided by European Twisted Mass Collaboration
9 countries, ∼20 universities and research centers
Unquenched Up Down quarks
Publicly available on International Lattice Data Grid

Subset used for this work
Single lattice spacing (4 available)
Single light quark mass (pion mass ∼400 MeV)



How to compute decay constants

Decay constant computation when D(′) at rest

〈0|
(
A +��V

)ren
0 |D

(′)(p = 0)〉 = MD fD , 〈0|V ren
0 |D(′)〉 = 0

With Twisted mass regularization

〈0|Aren
0 |D(′)〉 =

ml + mc

MD
〈0|P|D(′)〉, A0 = c̄γ0γ5d , P = i c̄γ5d

Decay constant is expressed in terms of RGI product

fD(′) =
(ml + mc) 〈0|P|D(′)〉

M2
D(′)

We must compute Pseudoscalar matrix element between |0〉 and |D〉:

ZD(′) ≡ 〈0|P|D(′)〉
this can be obtained from 2 points correlation function fit



Spectral decomposition of two points functions

Basic ingredient: two points correlation functions

O (x) ≡ c̄ (x) γ5q (x) . q = {u/d , s, c}

C (τ) =
∑

~x

〈
O† (~x , τ) O(~0, 0)

〉
=

Determination of ground state properties

Inserting the sum of projectors over all the states
∑

i |D(i)〉〈D(i)|:

C (τ) =
∑
i

∣∣∣〈0|O|D(i)〉
∣∣∣2 e−MD(i)τ

2MD(i)

τ→∞−→ | 〈0|O |D〉︸ ︷︷ ︸
ZD

|2 e−MDτ

2MD

Information on excited states extracted by looking at intermediate times:

0� t � tground



Two points correlation function computation

Wick contraction

C (τ) =
∑

~x

〈
O†Γ (~x , τ) OΓ

(
~0, 0
)〉

=
Wick

Tr
[
ΓSl
(
~x , τ ;~0, 0

)
ΓSc

(
~0, 0;~x , τ

)]
Solving Dirac equation on gauge background → full quark propagator

Dq (y , x) · Sq (x , 0) = δy ,0 Dq =
( 1

2κ + K [U]
)
1 + imqγ5τ3

0 0

x x

Combine 2 propagators with Dirac structures → 2 points functions
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Two points correlation function (log scale)
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Effective mass: Meff (τ) ≡ logC (τ + 1)− logC (τ)
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How to access to fD′?



Access to excited states

Coming back to spectral decomposition

C (t) ≡
∑
~x
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(
~0, 0
)〉

=
∑
P

| 〈0|O |P〉︸ ︷︷ ︸
Z(P)

|2 e−MP t

2MP

Limiting to two lightest states
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We determine Z (D) and MD by fitting C (t) at large time

Subtract D state contribution from C (t)

C ′ (t) ≡ C (t)− Z
2fit (D)
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D t
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Z
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C ′ (t) effective mass
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Eigenvalue problem

How to build different interpolating operators
Oi (x) = Ψ̄i (x) γ5Ψi (x) built in terms of Ψi (x) = Gi (x , y)ψ (y)

G is a convolution operator (smearing)

Consider a n × n matrix of correlation functions

Cij (τ) ≡
∑
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〈
O†i (~x , τ) Oj
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~0, 0
)〉

=
∑
P

〈0|O†i |P〉︸ ︷︷ ︸
Z∗i (P)

〈P|Oj |0〉︸ ︷︷ ︸
Zj (P)

e−MPτ

2MP

Diagonalization of correlation matrix
It can be shown that eigenvalues λk (t) of matrix C (t)behaves like:

λ0 (τ) = Z ∗D exp (−MDτ), λ1 (τ) = Z ∗D′ exp (−MD′τ) ...

~vk (t) define “optimal” interpolating operator coupling uniquely to state k :
OD = ~v0~O, OD′ = ~v1~O, . . .



Determining fD ′: RD ′ (τ) =
(
~vT

1 · C (τ) · ~v1 × eMD′τ
)−1/2
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Conclusions

*Preliminary* results

From the value of ZD′ and ZD :
fD′
fD

= 0.78(6)

Relative mass difference: MD′−MD
MD

= 59(6)%

Caveat: everything very preliminary!
Single lattice spacing
Not extrapolated to the physical pion mass

Future development
Analyze the other 3 lattice spacings and take the chiral extrapolation
All correlators already computed: expect the results in the next weeks

Thank you!


